心力衰竭新机制:免疫代谢炎症

廖玉华, 廖梦阳. 心力衰竭新机制:免疫代谢炎症[J]. 临床心血管病杂志, 2025, 41(1): 4-8. doi: 10.13201/j.issn.1001-1439.2025.01.003
引用本文: 廖玉华, 廖梦阳. 心力衰竭新机制:免疫代谢炎症[J]. 临床心血管病杂志, 2025, 41(1): 4-8. doi: 10.13201/j.issn.1001-1439.2025.01.003
LIAO Yuhua, LIAO Mengyang. New mechanisms of heart failure: immunometabolic inflammation[J]. J Clin Cardiol, 2025, 41(1): 4-8. doi: 10.13201/j.issn.1001-1439.2025.01.003
Citation: LIAO Yuhua, LIAO Mengyang. New mechanisms of heart failure: immunometabolic inflammation[J]. J Clin Cardiol, 2025, 41(1): 4-8. doi: 10.13201/j.issn.1001-1439.2025.01.003

心力衰竭新机制:免疫代谢炎症

  • 基金项目:
    国家自然科学基金面上项目(No:82270401)
详细信息

New mechanisms of heart failure: immunometabolic inflammation

More Information
  • 在心力衰竭发生发展过程中,各种原因引起机体免疫系统和代谢系统激活,通过炎症介导心室重构,衍生出心力衰竭的免疫代谢炎症新概念。本文将综述急性心肌梗死后伴发心力衰竭的免疫炎症和代谢性疾病伴发心力衰竭的代谢炎症,探索心力衰竭的免疫代谢炎症机制,为心力衰竭防治提供新途径。
  • 加载中
  • 图 1  AMI和代谢性疾病的心衰免疫代谢炎症模式

    Figure 1.  Working model of immunometabolic inflammation in heart failure after acute myocardial infarction and metabolic disease

  • [1]

    Schwinger RHG. Pathophysiology of heart failure[J]. Cardiovasc Diagn Ther, 2021, 11(1): 263-276. doi: 10.21037/cdt-20-302

    [2]

    中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024, 52(3): 235-275.

    [3]

    Oktay AA, Rich JD, Shah SJ. The Emerging Epidemic of Heart Failure with Preserved Ejection Fraction[J]. Curr Heart Fail Rep, 2013, 10(4): 401-410. doi: 10.1007/s11897-013-0155-7

    [4]

    中国心力衰竭中心联盟专家委员会. 心力衰竭SGLT2抑制剂临床应用的中国专家共识[J]. 临床心血管病杂志, 2022, 38(8): 599-605. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.08.001

    [5]

    Everett BM, Cornel JH, Lainscak M, et al. Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure[J]. Circulation, 2019, 139(10): 1289-1299. doi: 10.1161/CIRCULATIONAHA.118.038010

    [6]

    Abbate A, Wohlford GF, Del Buono MG, et al. Interleukin-1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials[J]. Eur Heart J Cardiovasc Pharmacother, 2022, 8(5): 503-510. doi: 10.1093/ehjcvp/pvab075

    [7]

    Diotallevi M, Ayaz F, Nicol T, et al. Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine[J]. Biochem Soc Trans, 2021, 49(5): 2189-2198. doi: 10.1042/BST20210269

    [8]

    Mathis D, Shoelson SE. Immunometabolism: an emerging frontier[J]. Nat Rev Immunol, 2011, 11(2): 81. doi: 10.1038/nri2922

    [9]

    Schultheiss HP, Schwimmbeck P, Bolte HD, et al. The antigenic characteristics and the significance of the adenine nucleotide translocator as a major autoantigen to antimitochondrial antibodies in dilated cardiomyopathy[J]. Adv Myocardiol, 1985, 6: 311-327.

    [10]

    Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumornecrosis factor in severe chronic heart failure[J]. N Engl J Med, 1990, 323(4): 236-241. doi: 10.1056/NEJM199007263230405

    [11]

    Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: A role in inflammation and repair[J]. J Mol Cell Cardiol, 2014, 70: 74-82. doi: 10.1016/j.yjmcc.2013.11.015

    [12]

    van Hout GP, Arslan F, Pasterkamp G, et al. Targeting dangerassociated molecular patterns after myocardial infarction[J]. Expert Opin Ther Targets, 2016, 20(2): 223-239. doi: 10.1517/14728222.2016.1088005

    [13]

    Ong SB, Sauri HR, Gustavo ECA, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87. doi: 10.1016/j.pharmthera.2018.01.001

    [14]

    Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction[J]. Circulation, 2010, 121(22): 2437-2445. doi: 10.1161/CIRCULATIONAHA.109.916346

    [15]

    陶荣, 廖玉华, 程翔, 等. 过继转输急性心肌梗死大鼠脾细胞介导心肌损伤[J]. 中国免疫学杂志, 2003, 19(9): 642-644.

    [16]

    Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction[J]. Nat Med, 2013, 19(10): 1273-1280. doi: 10.1038/nm.3284

    [17]

    Orn S, Ueland T, Manhenke C, et al. Increased interleukin-1beta levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention[J]. J Intern Med, 2012, 272(3): 267-276. doi: 10.1111/j.1365-2796.2012.02517.x

    [18]

    廖玉华, 余淼, 史河水. 心外膜脂肪组织: 心血管病防治的新靶点[J]. 临床心血管病杂志, 2020, 36(1): 11-14.

    [19]

    Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, et al. nfluence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction[J]. Am J Cardiol, 2014, 114(11): 1663-1669. doi: 10.1016/j.amjcard.2014.08.037

    [20]

    Khawaja T, Greer C, Chokshi A, et al. Epicardial fat volume in patients with left ventricular systolic dysfunction[J]. Am J Cardiol, 2011, 108(3): 397-401. doi: 10.1016/j.amjcard.2011.03.058

    [21]

    Eisenberg E, McElhinney PA, Commandeur F, et al. Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects[J]. Circ Cardiovasc Imaging, 2020, 13(2): e009829. doi: 10.1161/CIRCIMAGING.119.009829

    [22]

    Christensen RH, von Scholten BJ, Hansen CS, et al. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2019, 18(1): 114. doi: 10.1186/s12933-019-0917-y

    [23]

    Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium[J]. J Am Coll Cardiol, 2018, 71(20): 2360-2372. doi: 10.1016/j.jacc.2018.03.509

    [24]

    Vianello E, Dozio E, Bandera F, et al. Dysfunctional EAT thickness may promote maladaptive heart remodeling in CVD patients through the ST2-IL33 system, directly related to EPAC protein expression[J]. Sci Rep, 2019, 9(1): 10331. doi: 10.1038/s41598-019-46676-w

    [25]

    Díaz-Rodríguez E, Agra RM, Fernández ÁL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability[J]. Cardiovasc Res, 2018, 114(2): 336-346. doi: 10.1093/cvr/cvx186

    [26]

    Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study[J]. JACC Heart Fail, 2021, 9(8): 578-589. doi: 10.1016/j.jchf.2021.04.014

    [27]

    Zhou L, Cryan EV, Andrea MAD, et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1(SGLT1)[J]. J Cell Biochem, 2003, 90(2): 339-346. doi: 10.1002/jcb.10631

    [28]

    Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure(ATTACH)trial[J]. Circulation, 2003, 107(25): 3133-3140. doi: 10.1161/01.CIR.0000077913.60364.D2

    [29]

    Yu X, Deng L, Wang D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6): 848-857. doi: 10.1016/j.yjmcc.2012.10.002

    [30]

    廖梦阳, 廖玉华, 余淼, 等. SGLT2抑制剂治疗心力衰竭潜在机制的新认识[J]. 临床心血管病杂志, 2022, 38(1): 1-6.

    [31]

    Udell JA. SGLT2 Inhibitors Squeak Out a Win in Patients Post-MI[J]. NEJM Evid, 2024, 3(2): EVIDe2300318.

    [32]

    Butler J, Jones WS, Udell JA, et al. Empagliflozin after Acute Myocardial Infarction[J]. N Engl J Med, 2024, 390(16): 1455-1466. doi: 10.1056/NEJMoa2314051

    [33]

    Myasoedova VA, Parisi V, Moschetta D, et al. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue: a systematic review and meta-analysis[J]. Cardiovasc Diabetol, 2023, 22(1): 23. doi: 10.1186/s12933-023-01738-2

    [34]

    García-Vega D, Sánchez-López D, Rodríguez-Carnero G, et al. Semaglutide modulates prothrombotic and atherosclerotic mechanisms, associated with epicardial fat, neutrophils and endothelial cells network[J]. Cardiovasc Diabetol, 2024, 23(1): 1. doi: 10.1186/s12933-023-02096-9

    [35]

    Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity[J]. N Engl J Med, 2023, 389(12): 1069-1084. doi: 10.1056/NEJMoa2306963

    [36]

    Kosiborod MN, Petrie MC, Borlaug BA, et al. Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes[J]. N Engl J Med, 2024, 390(15): 1394-1407. doi: 10.1056/NEJMoa2313917

  • 加载中

(1)

计量
  • 文章访问数:  1137
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2024-11-17
刊出日期:  2025-01-13

目录