心力衰竭转化研究的新进展

邹云增, 王琦. 心力衰竭转化研究的新进展[J]. 临床心血管病杂志, 2025, 41(1): 9-13. doi: 10.13201/j.issn.1001-1439.2025.01.004
引用本文: 邹云增, 王琦. 心力衰竭转化研究的新进展[J]. 临床心血管病杂志, 2025, 41(1): 9-13. doi: 10.13201/j.issn.1001-1439.2025.01.004
ZOU Yunzeng, WANG Qi. Recent advances in translational research on heart failure[J]. J Clin Cardiol, 2025, 41(1): 9-13. doi: 10.13201/j.issn.1001-1439.2025.01.004
Citation: ZOU Yunzeng, WANG Qi. Recent advances in translational research on heart failure[J]. J Clin Cardiol, 2025, 41(1): 9-13. doi: 10.13201/j.issn.1001-1439.2025.01.004

心力衰竭转化研究的新进展

详细信息

Recent advances in translational research on heart failure

More Information
  • 几十年来,尽管心力衰竭(心衰)的治疗取得了相当大的进展,但心衰依然是全世界最主要的死亡原因之一。绝大多数能够诱发心衰的心血管疾病受到遗传和环境因素影响,基础及转化研究领域的最新研究进展,如遗传分析和单细胞分析,有助于揭示心衰的发病机制或病理生理机制,有望在心衰的诊断和预后分层方面发挥作用,为开发新的治疗手段提供新的思路和方法。本文主要阐述心衰转化研究方面的最新进展。
  • 加载中
  • 图 1  心衰诊断及预后分层的转化研究

    Figure 1.  Translational research on diagnosis and prognostic stratification of heart failure

    表 1  近期关于心衰scRNA-seq或snRNA-seq分析的研究

    Table 1.  Recent studies on scRNA-seq and snRNA-seq analysis in heart failure

    小鼠
    年份 方法 样本 手术
    2017[33] snRNA-seq 左心室CMs 对照组、TAC
    2018[15] scRNA-seq 左心室CMs 对照组、TAC
    2019[34] scRNA-seq 左心室CMs 对照组、TAC
    2019[35] scRNA-seq 整个心脏的CD45+细胞 对照组、TAC
    2020[16] scRNA-seq 左心室CMs 对照组、TAC
    2020[36] scRNA-seq 左心室CMs 对照组、TAC
    2022[17] scRNA-seq 左心室CMs 对照组、TAC、心肌梗死组
    人类
    年份 方法 样本 患者
    2017[33] snRNA-seq 左心室CMs 健康组、扩张型心肌病组
    2018[15] scRNA-seq 左心室CMs 健康组、扩张型心肌病组
    2020[16] scRNA-seq 左心室CMs 对照组、TAC
    2020[37] scRNA-seq 左心室或心房的细胞 健康组、心衰组、部分因植入左心室辅助装置而恢复
    2021[38] scRNA-seq、T细胞受体测序 左心室或右心室的细胞 健康组、扩张型心肌病组、缺血性心肌病组
    2022[39] scRNA-seq 左心室细胞核 健康组、扩张性型心肌病组、肥厚性心肌病组
    2022[17] scRNA-seq 左心室CMs 健康组、扩张型心肌病组
    2022[40] snRNA-seq 左心室细胞核 健康组、扩张型心肌病组、致心律失常性心肌病组
    2022[41] scRNA-seq、snRNA-seq 左心室CMs 健康组、扩张型心肌病组
    TAC:主动脉弓缩窄模型;CMs:心肌细胞。
    下载: 导出CSV
  • [1]

    Mosterd A, Hoes AW. Clinical epidemiology of heart failure[J]. Heart, 2007, 93(9): 1137-1146. doi: 10.1136/hrt.2003.025270

    [2]

    国家心血管病医疗质量控制中心专家委员会心力衰竭专家工作组. 2020中国心力衰竭医疗质量控制报告[J]. 中国循环杂志, 2021, 36(3): 221-238.

    [3]

    Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update: a report from the american heart association[J]. Circulation, 2021, 143(8): 254-743.

    [4]

    Tomomi I, Kaku H, Shouji M, et al. Clinical characteristics and outcomes of hospitalized patients with heart failure from the large-scale japanese registry of acute decompensated heart failure(JROADHF)[J]. Circ J, 2021, 85(9): 1438-1450. doi: 10.1253/circj.CJ-20-0947

    [5]

    中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 中国心力衰竭基层诊疗与管理指南(2024年)[J]. 中华全科医师杂志, 2024, 23(6): 549-577.

    [6]

    Yaku H, Ozasa N, Morimoto T, et al. Demographics, management, and in-hospital outcome of hospitalized acute heart failure syndrome patients in contemporary real clinical practice in japan ― observations from the prospective, multicenter kyoto congestive heart failure(KCHF)registry[J]. Circ J, 2018, 82(11): 2811-2819. doi: 10.1253/circj.CJ-17-1386

    [7]

    Crespo-Leiro MG, Anker SD, Maggioni AP, et al. European society of cardiology heart failure long-term registry(ESC-HF-LT): 1-year follow-up outcomes and differences across regions[J]. Eur J Heart Fail, 2016, 18(6): 613-625. doi: 10.1002/ejhf.566

    [8]

    王建昌, 刘平, 陈力达, 等. 老年人和中青年人首发急性左心衰竭诱因和病因的对比研究[J]. 中国老年学杂志, 2006, 26(12): 1607-1608.

    [9]

    Okura Y, Ramadan MM, Ohno Y, et al. Impending epidemic: future projection of heart failure in japan to the year 2055[J]. Circ J, 2008, 72(3): 489-491. doi: 10.1253/circj.72.489

    [10]

    Yasuda S, Miyamoto Y, Ogawa H. Current status of cardiovascular medicine in the aging society of Japan[J]. Circulation, 2018, 138(10): 965-967. doi: 10.1161/CIRCULATIONAHA.118.035858

    [11]

    Hamaguchi S, Kinugawa S, Sobirin M, et al. Mode of death in patients with heart failure and reduced vs. preserved ejection fraction: report from the registry of hospitalized heart failure patients[J]. Circ J, 2012, 76(7): 1662-1629.

    [12]

    Kaichi R, Marume K, Nakai M, et al. Relationship between heart failure hospitalization costs and left ventricular ejection fraction in an advanced aging society[J]. Circ Rep, 2022, 4(1): 48-58. doi: 10.1253/circrep.CR-21-0134

    [13]

    Olchanski N, Vest AR, Cohen JT, et al. Cost comparison across heart failure patients with reduced and preserved ejection fractions: analyses of inpatient decompensated heart failure admissions[J]. Int J Cardiol, 2018, 261: 103-108. doi: 10.1016/j.ijcard.2018.03.024

    [14]

    Suzuki A, Shiga T, Kawashiro N, et al. Changes in characteristics and outcomes in Japanese patients with heart failure from the 2000 s to the 2010 s: the HIJ-HF cohorts[J]. J Cardiol, 2020, 76(2): 132-138. doi: 10.1016/j.jjcc.2020.02.008

    [15]

    Nomura S, Satoh M, Fujita T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure[J]. Nat Commun, 2018, 9(1): 4435. doi: 10.1038/s41467-018-06639-7

    [16]

    Yamaguchi T, Sumida TS, Nomura S, et al. Cardiac dopamine d1 receptor triggers ventricular arrhythmia in chronic heart failure[J]. Nat Commun, 2020, 11(1): 4364-4364. doi: 10.1038/s41467-020-18128-x

    [17]

    Ko T, Nomura S, Yamada S, et al. Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis[J]. Nat Commun, 2022, 13(1): 3275-3275. doi: 10.1038/s41467-022-30630-y

    [18]

    Ko T, Ffujita K, Nnomura S, et al. Quantification of dna damage in heart tissue as a novel prediction tool for therapeutic prognosis of patients with dilated cardiomyopathy[J]. JACC Basic Transl Sci, 2019, 4(6): 670-680. doi: 10.1016/j.jacbts.2019.05.010

    [19]

    Yamada S, Ko T, Hatsuse S, et al. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction[J]. Nat Cardiovasc Res, 2022, 1(11): 1072-1083. doi: 10.1038/s44161-022-00140-7

    [20]

    Zhu H, Galdos FX, Lee D, et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis[J]. Circulation, 2022: 146(4): 316-335. doi: 10.1161/CIRCULATIONAHA.121.056730

    [21]

    Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis[J]. Circ Res, 2017, 121(9): 1092-1101. doi: 10.1161/CIRCRESAHA.117.311312

    [22]

    Kagiyama N, Piccirilli M, Yanamala N, et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features[J]. J Am Coll Cardiol, 2020, 76(8): 930-941. doi: 10.1016/j.jacc.2020.06.061

    [23]

    Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]. J Hematol Oncol, 2021, 14(1): 91. doi: 10.1186/s13045-021-01105-2

    [24]

    Yekula A, Tracz J, Rincon-Torroella J, et al. Single-cell rna sequencing of cerebrospinal fluid as an advanced form of liquid biopsy for neurological disorders[J]. Brain Sci, 2022, 12(7): 812-812. doi: 10.3390/brainsci12070812

    [25]

    Green ME, Hiroko W, Anderson LR, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice[J]. Science, 2016, 351(6273): 617-621. doi: 10.1126/science.aad3456

    [26]

    Malik FI, Hartman JJ, Elias KA, et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure[J]. Science, 2011, 331(6023): 1439-1443. doi: 10.1126/science.1200113

    [27]

    Najjar SS. Heart failure with preserved ejection fraction[J]. J Am Coll Cardiol, 2009, 54(5): 419-421. doi: 10.1016/j.jacc.2009.05.011

    [28]

    Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction[J]. Nature, 2019, 568(7752): 351-356. doi: 10.1038/s41586-019-1100-z

    [29]

    Tobita T, Nomura S, Fujita T, et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling[J]. Sci Rep, 2018, 8(1): 1998. doi: 10.1038/s41598-018-20114-9

    [30]

    Koyama S, Ito K, Terao C, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease[J]. Nat Genet, 2020, 52(11): 1169-1177. doi: 10.1038/s41588-020-0705-3

    [31]

    Yurista SR, Chong CR, Badimon JJ, et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2021, 77(13): 1660-1669. doi: 10.1016/j.jacc.2020.12.065

    [32]

    Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis[J]. Circulation, 2022, 146(18): 1383-1405. doi: 10.1161/CIRCULATIONAHA.122.061732

    [33]

    See K, Tan WLW, Lim EH, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincrna-regulated de-differentiation and cell cycle stress-response in vivo[J]. Nat Commun, 2017, 8(1): 225. doi: 10.1038/s41467-017-00319-8

    [34]

    Yekelchyk M, Guenther S, Preussner J, et al. Mono-and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population[J]. Basic Res Cardiol, 2019, 114(5): 36. doi: 10.1007/s00395-019-0744-z

    [35]

    Martini E, Kunderfranco P, Peano C, et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation[J]. Circulation, 2019, 140(25): 2089-2107. doi: 10.1161/CIRCULATIONAHA.119.041694

    [36]

    Ren Z, Yu P, Li D, et al. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy[J]. Circulation, 2020, 141(21): 1704-1719. doi: 10.1161/CIRCULATIONAHA.119.043053

    [37]

    Wang L, Yu P, Zhou B, et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function[J]. Nat Cell Biol, 2020, 22(1): 108-119. doi: 10.1038/s41556-019-0446-7

    [38]

    Rao M, Wang X, Guo G, et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level[J]. Basic Res Cardiol, 2021, 116(1): 55. doi: 10.1007/s00395-021-00897-1

    [39]

    Chaffin M, Papangeli I, Simonson B, et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy[J]. Nature, 2022, 608(7921): 174-180. doi: 10.1038/s41586-022-04817-8

    [40]

    Reichart D, Lindberg EL, Maatz H, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies[J]. Science, 2022, 377(6606): 1984-1984. doi: 10.1126/science.abo1984

    [41]

    Koenig AL, Shchukina I, Amrute J, et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure[J]. Nat Cardiovasc Res, 2022, 1(3): 263-280. doi: 10.1038/s44161-022-00028-6

  • 加载中

(1)

(1)

计量
  • 文章访问数:  936
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2024-11-14
刊出日期:  2025-01-13

目录