心肾综合征生物标志物研究新进展

刘天承, 胡政琪, 唐毅, 等. 心肾综合征生物标志物研究新进展[J]. 临床心血管病杂志, 2025, 41(1): 20-23. doi: 10.13201/j.issn.1001-1439.2025.01.006
引用本文: 刘天承, 胡政琪, 唐毅, 等. 心肾综合征生物标志物研究新进展[J]. 临床心血管病杂志, 2025, 41(1): 20-23. doi: 10.13201/j.issn.1001-1439.2025.01.006
LIU Tiancheng, HU Zhengqi, TANG Yi, et al. New advances in biomarker research for cardiorenal syndrome[J]. J Clin Cardiol, 2025, 41(1): 20-23. doi: 10.13201/j.issn.1001-1439.2025.01.006
Citation: LIU Tiancheng, HU Zhengqi, TANG Yi, et al. New advances in biomarker research for cardiorenal syndrome[J]. J Clin Cardiol, 2025, 41(1): 20-23. doi: 10.13201/j.issn.1001-1439.2025.01.006

心肾综合征生物标志物研究新进展

  • 基金项目:
    湖南省科技创新计划项目(No:2020SK50923);湖南省卫生健康委科研计划项目(No:202103012371);仁术基金重点培育项目(No:RS2022A12)
详细信息

New advances in biomarker research for cardiorenal syndrome

More Information
  • 心肾综合征(CRS)是一种心脏和肾脏功能障碍并存的疾病,显著影响患者预后。本文介绍了CRS相关生物标志物,包括利钠肽、致瘤抑制因子-2(suppression of tumorigenicity-2,ST2)、半乳糖凝集素-3(galectin-3,Gal-3)、中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)等的研究新进展,重点探讨其在疾病诊断、预后评估及治疗指导中的作用,并强调了多种标志物联合应用可更准确反映疾病的复杂病理过程,提高诊断和治疗效果。新型标志物为改善CRS患者预后提供了潜在可能,但仍需进一步研究验证其临床价值。
  • 加载中
  • [1]

    Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association[J]. Circulation, 2019, 139(16): e840-e78.

    [2]

    Fu S, Zhao S, Ye P, et al. Biomarkers in Cardiorenal Syndromes[J]. BioMed Res Int, 2018: 9617363.

    [3]

    Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy[J]. Int J Mol Sci, 2023, 24(6): 5089. doi: 10.3390/ijms24065089

    [4]

    Liu C, Liang W, He X, et al. Prognostic Value of Cysteine-Rich Protein 61 Combined with N-Terminal Pro-B-Type Natriuretic Peptide for Mortality in Acute Heart Failure Patients with and without Chronic Kidney Disease[J]. Cardiorenal Med, 2020, 10(1): 11-21. doi: 10.1159/000501929

    [5]

    de la Espriella R, Bayés-Genís A, Llàcer P, et al. Prognostic value of NT-proBNP and CA125 across glomerular filtration rate categories in acute heart failure[J]. Eur J Int Med, 2022, 95: 67-73. doi: 10.1016/j.ejim.2021.08.024

    [6]

    Delalic ' D, Brežni T, Prka in I. Diagnostic value and utility of commonly used biomarkers of cardiac and renal function in cardiorenal syndromes: a narrative review[J]. Biochem Med, 2023, 33(3): 030502.

    [7]

    Sciatti E, Merlo A, Scangiuzzi C, et al. Prognostic Value of sST2 in Heart Failure[J]. J Clin Med, 2023, 12(12): 3970. doi: 10.3390/jcm12123970

    [8]

    Kim AJ, Ro H, Kim H, et al. Soluble ST2 and Galectin-3 as Predictors of Chronic Kidney Disease Progression and Outcomes[J]. Am J Nephrol, 2021, 52(2): 119-30. doi: 10.1159/000513663

    [9]

    Ma H, Zhou J, Zhang M, et al. The Diagnostic Accuracy of N-Terminal Pro-B-Type Natriuretic Peptide and Soluble ST2 for Heart Failure in Chronic Kidney Disease Patients: A Comparative Analysis[J]. Med Sci Monit, 2023, 29: e940641.

    [10]

    Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases[J]. Biomolecules, 2020, 10(3): 389. doi: 10.3390/biom10030389

    [11]

    Chung EYM, Trinh K, Li J, et al. Biomarkers in Cardiorenal Syndrome and Potential Insights Into Novel Therapeutics[J]. Front Cardiovasc Med, 2022, 9: 868658. doi: 10.3389/fcvm.2022.868658

    [12]

    Blanda V, Bracale UM, Di Taranto MD, et al. Galectin-3 in Cardiovascular Diseases[J]. Int J Mol Sci, 2020, 21(23): 9232. doi: 10.3390/ijms21239232

    [13]

    Ghorbani A, Bhambhani V, Christenson RH, et al. Longitudinal Change in Galectin-3 and Incident Cardiovascular Outcomes[J]. J Am Coll Cardiol, 2018, 72(25): 3246-3254. doi: 10.1016/j.jacc.2018.09.076

    [14]

    Tuegel C, Katz R, Alam M, et al. GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD[J]. Am J Kidney Dis, 2018, 72(4): 519-528. doi: 10.1053/j.ajkd.2018.03.025

    [15]

    Han X, Zhang S, Chen Z, et al. Cardiac biomarkers of heart failure in chronic kidney disease[J]. Clin Chim Acta, 2020, 510: 298-310. doi: 10.1016/j.cca.2020.07.040

    [16]

    Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin(NGAL)[J]. Int J Mol Sci, 2023, 24(13): 10470. doi: 10.3390/ijms241310470

    [17]

    Karmakova Т, Sergeeva NS, Kanukoev КY, et al. Kidney Injury Molecule 1(KIM-1): a Multifunctional Glycoprotein and Biological Marker(Review)[J]. Sovrem Tekhnologii Med, 2021, 13(3): 64-78. doi: 10.17691/stm2021.13.3.08

    [18]

    Josa-Laorden C, Rubio-Gracia J, Sánchez-Marteles M, et al. Elevated urinary kidney injury molecule 1 at discharge strongly predicts early mortality following an episode of acute decompensated heart failure[J]. Pol Arch Int Med, 2022, 132(9): 16284.

    [19]

    Fu K, Hu Y, Zhang H, et al. Insights of Worsening Renal Function in Type 1 Cardiorenal Syndrome: From the Pathogenesis, Biomarkers to Treatment[J]. Front Cardiovasc Med, 2021 8: 760152. doi: 10.3389/fcvm.2021.760152

    [20]

    Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis[J]. Immunol Rev, 2018, 281(1): 138-153. doi: 10.1111/imr.12616

    [21]

    Udzik J, Waszczyk A, Wojciechowska-Koszko I, et al. The Utility of Novel Kidney Injury Biomarkers in Early Detection of CSA-AKI[J]. Int J Mol Sci, 2022, 23(24): 15864. doi: 10.3390/ijms232415864

    [22]

    Zhang J, Zhu P, Li S, et al. From heart failure and kidney dysfunction to cardiorenal syndrome: TMAO may be a bridge[J]. Front Pharmacol, 2023, 14: 1291922. doi: 10.3389/fphar.2023.1291922

    [23]

    Su LJ, Li YM, Kellum JA, et al. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis[J]. Br J Anaesth, 2018, 121(2): 350-357. doi: 10.1016/j.bja.2018.02.069

    [24]

    Wang W, Shen Q, Zhou X. The predictive value of[TIMP-2]*[IGFBP7]in adverse outcomes for acute kidney injury: a systematic review and meta-analysis[J]. Renal Fail, 2023, 45(2): 2253933. doi: 10.1080/0886022X.2023.2253933

    [25]

    Gembillo G, Visconti L, Giusti MA, et al. Cardiorenal Syndrome: New Pathways and Novel Biomarkers[J]. Biomolecules, 2021, 11(11): 1581. doi: 10.3390/biom11111581

    [26]

    Huang CK, Bär C, Thum T. miR-21, Mediator, and Potential Therapeutic Target in the Cardiorenal Syndrome[J]. Front Pharmacol, 2020, 11: 726. doi: 10.3389/fphar.2020.00726

    [27]

    Dhaliwal S, Kalogeropoulos AP. Markers of Iron Metabolism and Outcomes in Patients with Heart Failure: A Systematic Review[J]. Int J Mol Sci, 2023, 24(6): 5645. doi: 10.3390/ijms24065645

    [28]

    Mohamed ON, Mady AM, Sedik MM, et al. The relationship between asymptomatic atherosclerosis and hepcidin-25 in chronic kidney disease patients[J]. Ann Saudi Med, 2023, 43(5): 298-308. doi: 10.5144/0256-4947.2023.298

    [29]

    Julovi SM, Sanganeria B, Minhas N, et al. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis[J]. Lab Invest, 2020, 100(9): 1184-1196. doi: 10.1038/s41374-020-0434-3

    [30]

    Zhou Y, Ng DYE, Richards AM, et al. microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis[J]. Mol Ther Nucleic Acids, 2020, 22: 803-814. doi: 10.1016/j.omtn.2020.09.041

    [31]

    贺彩红, 刘金武, 朱照贺, 等. 联合预测因子对急性心肌梗死患者院内并发1型心肾综合征风险的预测价值[J]. 中华心血管病杂志, 2021, 49(8): 802-808.

    [32]

    Song X, Cai D, Zhang B. Clinical values of serum NGAL combined with NT-proBNP in the early prognosis of type 1 cardiorenal syndrome[J]. Am J Transl Res, 2021, 13(4): 3363-3368.

  • 加载中
计量
  • 文章访问数:  1193
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2024-08-13
刊出日期:  2025-01-13

目录