多模态腔内影像在冠状动脉介入中的应用

于波. 多模态腔内影像在冠状动脉介入中的应用[J]. 临床心血管病杂志, 2025, 41(4): 245-249. doi: 10.13201/j.issn.1001-1439.2025.04.001
引用本文: 于波. 多模态腔内影像在冠状动脉介入中的应用[J]. 临床心血管病杂志, 2025, 41(4): 245-249. doi: 10.13201/j.issn.1001-1439.2025.04.001
YU Bo. Multimodality intravascular imaging in percutaneous coronary intervention[J]. J Clin Cardiol, 2025, 41(4): 245-249. doi: 10.13201/j.issn.1001-1439.2025.04.001
Citation: YU Bo. Multimodality intravascular imaging in percutaneous coronary intervention[J]. J Clin Cardiol, 2025, 41(4): 245-249. doi: 10.13201/j.issn.1001-1439.2025.04.001

多模态腔内影像在冠状动脉介入中的应用

详细信息
    通讯作者: 于波,E-mail:yubodr@163.com
  • 中图分类号: R541.4

Multimodality intravascular imaging in percutaneous coronary intervention

More Information
  • 血管内超声、光学相干断层成像等腔内影像学检查可对血管壁进行断层横截面成像,可以准确地识别和评估病变性质、指导介入治疗,提高即刻手术效果和远期预后,在最新的专家共识及指南中推荐将腔内影像学检查用于冠心病患者经皮冠状动脉介入治疗的指导及优化。然而,多种腔内影像学技术均有其优势与局限性,多模态腔内影像技术应运而生。目前已有数种多模态腔内影像导管应用于科研及临床工作,在检测高危斑块、指导经皮冠状动脉介入治疗及评估斑块进展等方面为医生提供更加准确和全面的组织学和形态学信息。
  • 加载中
  • 表 1  腔内影像设备对斑块形态学特征及微结构的识别能力

    Table 1.  Recognition ability of intracavitary imaging equipment for plaque morphological characteristics and microstructure

    腔内影像设备 管腔狭窄 斑块负荷 纤维帽 脂质核心 活动性炎症 血管重构
    IVUS +++ +++ +- + - +++
    OCT +++ - +++ + + -
    NIRS - - - +++ - -
    NIR(A)F - - - + ++ -
    FLIm - - - + + -
    IVPA +- +- - +++ + +-
    NIRS-IVUS +++ +++ +- +++ - +++
    IVUS-OCT +++ +++ +++ + + +++
    OCT-NIRS +++ - +++ +++ + -
    OCT-NIR(A)F +++ - +++ + ++ -
    NIRF-IVUS +++ +++ +- + ++ +++
    FLIm-IVUS +++ +++ +- + + +++
    FLIm-OCT +++ - +++ + + -
    IVPA-IVUS +++ +++ +- +++ + +++
    下载: 导出CSV
  • [1]

    Stone GW, Christiansen EH, Ali ZA, et al. Intravascular imaging-guided coronary drug-eluting stent implantation: an updated network meta-analysis [J]. Lancet, 2024, 403(10429): 824-837. doi: 10.1016/S0140-6736(23)02454-6

    [2]

    Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes [J]. Eur Heart J, 2024, 45(36): 3415-3537.

    [3]

    Rao SV, O'Donoghue ML, Ruel M, et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines [J]. Circulation, 2025. DOI: 10.1161/CIR.0000000000001309.

    [4]

    Schultz CJ, Serruys PW, van der Ent M, et al. First-in-man clinical use of combined near-infrared spectroscopy and intravascular ultrasound: a potential key to predict distal embolization and no-reflow? [J]. J Am Coll Cardiol, 2010, 56(4): 314.

    [5]

    Yin JC, Yang HC, Li X, et al. Integrated intravascular optical coherence tomography ultrasound imaging system [J]. J Biomed Opt, 2010, 15(1): 010512. doi: 10.1117/1.3308642

    [6]

    Li X, Yin JC, Hu CH, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe [J]. Appl Phys Lett, 2010, 97(13): 133702. doi: 10.1063/1.3493659

    [7]

    Li JW, Ma T, Mohar D, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo [J]. Sci Rep, 2015, 5: 18406. doi: 10.1038/srep18406

    [8]

    Sheth TN, Pinilla-Echeverri N, Mehta SR, et al. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter [J]. JACC Cardiovasc Interv, 2018, 11(23): 2427-2430. doi: 10.1016/j.jcin.2018.09.022

    [9]

    Jin QH, Fu ZH, Wang YP, et al. A multicenter feasibility and safety study of a novel hybrid IVUS-OCT imaging system [J]. JACC Asia, 2025, 5(3 Pt 1): 396-400.

    [10]

    Jia HB, Zhao C, Yu H, et al. Clinical performance of a novel hybrid IVUS-OCT system: a multicentre, randomised, non-inferiority trial(PANOVISION) [J]. EuroIntervention, 2023, 19(4): e318-e320. doi: 10.4244/EIJ-D-22-01058

    [11]

    Verjans JW, Osborn EA, Ughi GJ, et al. Targeted near-infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of indocyanine green [J]. JACC Cardiovasc Imaging, 2016, 9(9): 1087-1095. doi: 10.1016/j.jcmg.2016.01.034

    [12]

    Ughi GJ, Verjans J, Fard AM, et al. Dual modality intravascular optical coherence tomography(OCT)and near-infrared fluorescence(NIRF)imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging [J]. Int J Cardiovasc Imaging, 2015, 31(2): 259-268.

    [13]

    Ughi GJ, Wang H, Gerbaud E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging [J]. JACC Cardiovasc Imaging, 2016, 9(11): 1304-1314.

    [14]

    Rauschendorfer P, Lenz T, Nicol P, et al. Intravascular ICG-enhanced NIRF-IVUS imaging to assess progressive atherosclerotic lesions in excised human coronary arteries [J]. NPJ Cardiovasc Health, 2024, 1(1): 14. doi: 10.1038/s44325-024-00016-8

    [15]

    Fatakdawala H, Gorpas D, Bishop JW, et al. Fluorescence lifetime imaging combined with conventional intravascular ultrasound for enhanced assessment of atherosclerotic plaques: an ex vivo study in human coronary arteries [J]. J Cardiovasc Transl Res, 2015, 8(4): 253-263. doi: 10.1007/s12265-015-9627-3

    [16]

    Nam HS, Kang WJ, Lee MW, et al. Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography [J]. Biomed Opt Express, 2018, 9(4): 1930-1947.

    [17]

    Lee MW, Song JW, Kang WJ, et al. Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging [J]. Sci Rep, 2018, 8(1): 14561.

    [18]

    VanderLaan D, Karpiouk AB, Yeager D, et al. Real-time intravascular ultrasound and photoacoustic imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2017, 64(1): 141-149.

    [19]

    Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study [J]. Lancet, 2019, 394(10209): 1629-1637.

    [20]

    Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT Ⅱ): a prospective natural history study [J]. Lancet, 2021, 397(10278): 985-995.

    [21]

    Stone GW, Maehara A, Ali ZA, et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque [J]. J Am Coll Cardiol, 2020, 76(20): 2289-2301.

    [22]

    Park SJ, Ahn JM, Kang DY, et al. Preventive percutaneous coronary intervention versus optimal medical therapy alone for the treatment of vulnerable atherosclerotic coronary plaques(PREVENT): a multicentre, open-label, randomised controlled trial [J]. Lancet, 2024, 403(10438): 1753-1765.

    [23]

    Akl E, Pinilla-Echeverri N, Garcia-Garcia HM, et al. First in-human evaluation of a novel intravascular ultrasound and optical coherence tomography system for intracoronary imaging [J]. Catheter Cardiovasc Interv, 2022, 99(3): 686-698.

    [24]

    Räber L, Ueki Y, Otsuka T, et al. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial [J]. JAMA, 2022, 327(18): 1771-1781.

    [25]

    Nicholls SJ, Kataoka Y, Nissen SE, et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction [J]. JACC Cardiovasc Imaging, 2022, 15(7): 1308-1321.

  • 加载中
计量
  • 文章访问数:  254
  • 施引文献:  0
出版历程
收稿日期:  2025-03-19
刊出日期:  2025-04-13

返回顶部

目录