CDK1基因在肺动脉高压中表达和临床意义的生物信息学分析

秦雨晗, 乔勇, 鄢高亮, 等. CDK1基因在肺动脉高压中表达和临床意义的生物信息学分析[J]. 临床心血管病杂志, 2021, 37(7): 651-658. doi: 10.13201/j.issn.1001-1439.2021.07.012
引用本文: 秦雨晗, 乔勇, 鄢高亮, 等. CDK1基因在肺动脉高压中表达和临床意义的生物信息学分析[J]. 临床心血管病杂志, 2021, 37(7): 651-658. doi: 10.13201/j.issn.1001-1439.2021.07.012
QIN Yuhan, QIAO Yong, YAN Gaoliang, et al. Bioinformatics analysis of CDK1 gene expression and clinical significance in pulmonary hypertension[J]. J Clin Cardiol, 2021, 37(7): 651-658. doi: 10.13201/j.issn.1001-1439.2021.07.012
Citation: QIN Yuhan, QIAO Yong, YAN Gaoliang, et al. Bioinformatics analysis of CDK1 gene expression and clinical significance in pulmonary hypertension[J]. J Clin Cardiol, 2021, 37(7): 651-658. doi: 10.13201/j.issn.1001-1439.2021.07.012

CDK1基因在肺动脉高压中表达和临床意义的生物信息学分析

  • 基金项目:

    国家自然科学基金面上项目(No:81970237

    81600227)

详细信息
    通讯作者: 汤成春,E-mail:tangchengchun@hotmail.com
  • 中图分类号: R541.5

Bioinformatics analysis of CDK1 gene expression and clinical significance in pulmonary hypertension

More Information
  • 目的:通过生物信息学的方法分析筛选肺动脉高压(PAH)的关键基因。方法:通过GEO数据库下载GSE113439和GSE144274。依次进行GO、KEGG及GSEA进行功能及通路富集分析。利用String及Cytoscape软件建立蛋白互作(PPI)网络,进一步通过MCODE、CentiScape和CytoHubba插件筛选核心基因。结果:GSE113439中有544个DEGs(上调462个,下调82个),主要参与DNA双链解螺旋、DNA修复、有丝分裂核分裂等生物学过程。GSE144274中有1121个DEGs(上调702个,下调509个),主要参与细胞分裂、有丝分裂姐妹染色单体分离、染色体分离等生物学过程。两组数据集的DEGs均显著富集在细胞周期信号通路。建立PPI网络后,根据MCODE和CentiScape插件筛选出关键作用模块,根据MCC算法选择关键候选基因,并最终筛选出CDK1为关键基因。结论:CDK1是PAH的关键基因,可能成为PAH潜在的治疗靶点。
  • 加载中
  • [1]

    McGoon MD,Benza RL,Escribano-Subias P,et al.Pulmonary arterial hypertension:epidemiology and registries[J].J Am Coll Cardiol,2013,62:D51-59.

    [2]

    Thenappan T,Ormiston ML,Ryan JJ,et al.Pulmonary arterial hypertension:pathogenesis and clinical management[J].BMJ,2018,360:5492.

    [3]

    Simonneau G,Montani D,Celermajer DS,et al.Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J].Eur Respir J,2019,53(1):120.

    [4]

    饶洋洋,周红梅,李艺,等.肺动脉高压合并心律失常的研究进展[J].临床心血管病杂志,2020,36(6):577-580.

    [5]

    Vonk-Noordegraaf A,Haddad F,Chin KM,et al.Right heart adaptation to pulmonary arterial hypertension:physiology and pathobiology[J].J Am Coll Cardiol,2013,62(25 Suppl):D22-33.

    [6]

    Zhang R,Dai LZ,Xie WP,et al.Survival of Chinese patients with pulmonary arterial hypertension in the modern treatment era[J].Chest,2011,140(2):301-309.

    [7]

    Ling Y,Johnson MK,Kiely DG,et al.Changing demographics,epidemiology,and survival of incident pulmonary arterial hypertension:results from the pulmonary hypertension registry of the United Kingdom and Ireland[J].Am J Respir Crit Care Med,2012,186(8):790-796.

    [8]

    Shen H,Zhang J,Wang C,et al.MDM2-mediated ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension[J].Circulation,2020,142(12):1190-1204.

    [9]

    Gräf S,Haimel M,Bleda M,et al.Identification of rare sequence variation underlying heritable pulmonary arterial hypertension[J].Nat Commun,2018,9(1):1416.

    [10]

    Rhodes CJ,Otero-Núňez P,Wharton J,et al.Whole-blood RNA profiles associated with pulmonary arterial hypertension and clinical outcome[J].Am J Respir Crit Care Med,2020,202(4):586-594.

    [11]

    Stearman RS,Bui QM,Speyer G,et al.Systems analysis of the human pulmonary arterial hypertension lung transcriptome[J].Am J Respir Cell Mol Biol,2019,60(6):637-649.

    [12]

    Barrett T,Suzek TO,Troup DB,et al.NCBI GEO:mining millions of expression profiles--database and tools[J].Nucleic Acids Res,2005,33:D562-566.

    [13]

    Zhou G,Soufan O,Ewald J,et al.NetworkAnalyst 3.0:a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J].Nucleic Acids Res,2019,47(W1):W234-W241.

    [14]

    Ritchie ME,Phipson B,Wu D,et al.limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Res,2015,43(7):e47.

    [15]

    Huang da W,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nat Protoc,2009,4(1):44-57.

    [16]

    Ashburner M,Ball CA,Blake JA,et al.Gene ontology:tool for the unification of biology.The Gene Ontology Consortium[J].Nat Genet,2000,25(1):25-29.

    [17]

    Kanehisa M,Goto S.KEGG:kyoto encyclopedia of genes and genomes[J].Nucleic Acids Res,2000,28(1):27-30.

    [18]

    Shannon P,Markiel A,Ozier O,et al.Cytoscape:a software environment for integrated models of biomolecular interaction networks[J].Genome Res,2003,13(11):2498-504.

    [19]

    Hemnes AR,Humbert M.Pathobiology of pulmonary arterial hypertension:understanding the roads less travelled[J].Eur Respir Rev,2017,26(146):120.

    [20]

    Gaine S,McLaughlin V.Pulmonary arterial hypertension:tailoring treatment to risk in the current era[J].Eur Respir Rev,2017,26(146):100.

    [21]

    Farber HW,Miller DP,Poms AD,et al.Five-Year outcomes of patients enrolled in the REVEAL Registry[J].Chest,2015,148(4):1043-1054.

    [22]

    Zha LH,Zhou J,Li TZ,et al.NLRC3:A novel noninvasive biomarker for pulmonary hypertension diagnosis[J].Aging Dis,2018,9(5):843-851.

    [23]

    Frost A,Badesch D,Gibbs J,et al.Diagnosis of pulmonary hypertension[J].Eur Respir J,2019,53(1):100.

    [24]

    Galiè N,Humbert M,Vachiery JL,et al.2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Heart J,2016,37:67-119.

    [25]

    Rosenkranz S,Preston IR.Right heart catheterisation:best practice and pitfalls in pulmonary hypertension[J].Eur Respir Rev,2015,24:642-652.

    [26]

    Gu M,Shao NY,Sa S,et al.Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers[J].Cell Stem Cell,2017,20(4):490-504.e5.

    [27]

    Morrell NW,Aldred MA,Chung WK,et al.Genetics and genomics of pulmonary arterial hypertension[J].Eur Respir J,2019,53:130.

    [28]

    Kan M,Shumyatcher M,Himes BE.Using omics approaches to understand pulmonary diseases[J].Respir Res,2017,18:149.

    [29]

    Zhu N,Pauciulo MW,Welch CL,et al.Novel risk genes and mechanisms implicated by exome sequencing of 2572 individuals with pulmonary arterial hypertension[J].Genome Med,2019,11(1):69.

    [30]

    Zhu TT,Zhang WF,Yin YL,et al.MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension[J].J Cell Physiol,2019,234(6):9535-9550.

    [31]

    Malumbres M,Barbacid M.Cell cycle,CDKs and cancer:a changing paradigm[J].Nat Rev Cancer,2009,9(3):153-66.

    [32]

    Liu S,Yang Y,Jiang S,et al.Corrigendum:MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1[J].Front Genet,2019,10:193.

    [33]

    Weiss A,Neubauer MC,Yerabolu D,et al.Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension[J].Nat Commun,2019,10(1):2204.

  • 加载中
计量
  • 文章访问数:  1411
  • PDF下载数:  421
  • 施引文献:  0
出版历程
收稿日期:  2021-01-18

目录