外泌体在心房颤动中的作用研究进展

刘伟, 官红权, 丁嘉星, 等. 外泌体在心房颤动中的作用研究进展[J]. 临床心血管病杂志, 2021, 37(11): 983-987. doi: 10.13201/j.issn.1001-1439.2021.11.003
引用本文: 刘伟, 官红权, 丁嘉星, 等. 外泌体在心房颤动中的作用研究进展[J]. 临床心血管病杂志, 2021, 37(11): 983-987. doi: 10.13201/j.issn.1001-1439.2021.11.003
LIU Wei, GUAN Hongquan, DING Jiaxing, et al. Research progress on the role of exosome in atrial fibrillation[J]. J Clin Cardiol, 2021, 37(11): 983-987. doi: 10.13201/j.issn.1001-1439.2021.11.003
Citation: LIU Wei, GUAN Hongquan, DING Jiaxing, et al. Research progress on the role of exosome in atrial fibrillation[J]. J Clin Cardiol, 2021, 37(11): 983-987. doi: 10.13201/j.issn.1001-1439.2021.11.003

外泌体在心房颤动中的作用研究进展

  • 基金项目:

    国家自然科学基金项目(No:81770330)

详细信息
    通讯作者: 陈志坚,E-mail:chenzhijian9999@126.com
  • 中图分类号: R541.7

Research progress on the role of exosome in atrial fibrillation

More Information
  • 心房颤动是临床上最常见的快速性心律失常之一,常引起脑卒中、冠心病、心力衰竭、肢体动脉栓塞等严重并发症,是导致患者不良预后的重要因素。外泌体是细胞释放的30~150 nm大小的双层脂质囊泡,携带蛋白质、核酸和脂质等生物活性物质;其作为信息传递的媒介,在细胞间通讯中起着关键作用。近年研究发现外泌体广泛参与心血管疾病的病理生理过程,其与心房颤动的发生发展也关系密切,本文就细胞外囊泡概述、外泌体基本生物学特性以及外泌体在心房颤动中的作用研究进展作一综述。
  • 加载中
  • [1]

    Roth GA,Mensah GA,Johnson CO,et al.Global burden of cardiovascular diseases and risk factors,1990-2019:Update From the GBD 2019 Study[J].J Am Coll Cardiol,2020,76(25):2982-3021.

    [2]

    Joseph PG,Healey JS,Raina P,et al.Global variations in the prevalence,treatment,and impact of atrial fibrillation in a multi-national cohort of 153,152 middle-aged individuals[J].Cardiovasc Res,2020:cvaa241.

    [3]

    Zoni-Berisso M,Lercari F,Carazza T,et al.Epidemiology of atrial fibrillation:European perspective[J].Clin Epidemiol,2014,6:213-220.

    [4]

    Zara M,Amadio P,Campodonico J,et al.Exosomes in cardiovascular diseases[J].Diagnostics(Basel),2020,10(11):943.

    [5]

    Teng F,Fussenegger M.Shedding light on extracellular vesicle biogenesis and bioengineering[J].Adv Sci(Weinh),2020,8(1):2003505.

    [6]

    French KC,Antonyak MA,Cerione RA.Extracellular vesicle docking at the cellular port:Extracellular vesicle binding and uptake[J].Semin Cell Dev Biol,2017,67:48-55.

    [7]

    Colombo M,Raposo G,Thery C.Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J].Annu Rev Cell Dev Biol,2014,30:255-289.

    [8]

    Johnstone RM,Adam M,Hammond JR,et al.Vesicle formation during reticulocyte maturation.Association of plasma membrane activities with released vesicles(exosomes)[J].J Biol Chem,1987,262(19):9412-9420.

    [9]

    Palmulli R,van Niel G.To be or not to be...secreted as exosomes,a balance finely tuned by the mechanisms of biogenesis[J].Essays Biochem,2018,62(2):177-191.

    [10]

    Simpson RJ,Jensen SS,Lim JW.Proteomic profiling of exosomes:current perspectives[J].Proteomics,2008,8(19):4083-4099.

    [11]

    Jimenez-Avalos JA,Fernandez-Macias JC,Gonzalez-Palomo AK.Circulating exosomal MicroRNAs:New non-invasive biomarkers of non-communicable disease[J].Mol Biol Rep,2021,48(1):961-967.

    [12]

    Turturici G,Tinnirello R,Sconzo G,et al.Extracellular membrane vesicles as a mechanism of cell-to-cell communication:advantages and disadvantages[J].Am J Physiol Cell Physiol,2014,306(7):C621-633.

    [13]

    杜以梅,张家明,李景东.心房颤动病理生理机制的最新认识[J].临床心血管病杂志,2015,31(3):231-233.

    [14]

    Seko Y,Kato T,Haruna T,et al.Association between atrial fibrillation,atrial enlargement,and left ventricular geometric remodeling[J].Sci Rep,2018,8(1):6366.

    [15]

    Giudice A,Croci T,Bianchetti A,et al.Inhibition of rat colonic motility and cardiovascular effects of new gut-specific beta-adrenergic phenylethanolaminotetralines[J].Life Sci,1989,44(19):1411-1417.

    [16]

    Nattel S.Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation[J].JACC Clin Electrophysiol,2017,3(5):425-435.

    [17]

    Xu J,Lei S,Sun S,et al.MiR-324-3p regulates fibroblast proliferation via targeting TGF-beta1 in atrial fibrillation[J].Int Heart J,2020,61(6):1270-1278.

    [18]

    Li J,Zhang Q,Jiao H.LncRNA NRON promotes M2 macrophage polarization and alleviates atrial fibrosis through suppressing exosomal miR-23a derived from atrial myocytes[J].J Formos Med Assoc,2020,S0929-6646(20):30552-0.

    [19]

    Liu L,Zhang H,Mao H,et al.Exosomal miR-320 d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation(AF)[J].Artif Cells Nanomed Biotechnol,2019,47(1):3976-3984.

    [20]

    Haemers P,Hamdi H,Guedj K,et al.Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria[J].Eur Heart J,2017,38(1):53-61.

    [21]

    Zhao L,Ma Z,Guo Z,et al.Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation[J].Biomed Pharmacother,2020,121:109634.

    [22]

    Kim JH,Ham S,Lee Y,et al.TTC3 contributes to TGF-beta1-induced epithelial-mesenchymal transition and myofibroblast differentiation,potentially through SMURF2 ubiquitylation and degradation[J].Cell Death Dis,2019,10(2):92.

    [23]

    Liu L,Chen Y,Shu J,et al.Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis[J].J Thorac Dis,2020,12(10):5617-5627.

    [24]

    Iwasaki YK,Nishida K,Kato T,et al.Atrial fibrillation pathophysiology:implications for management[J].Circulation,2011,124(20):2264-2274.

    [25]

    Li S,Gao Y,Liu Y,et al.Myofibroblast-derived exosomes contribute to development of a susceptible substrate for atrial fibrillation[J].Cardiology,2020,145(5):324-332.

    [26]

    Dobrev D.Electrical remodeling in atrial fibrillation[J].Herz,2006,31(2):108-112;quiz 142-3.

    [27]

    Nattel S,Harada M.Atrial remodeling and atrial fibrillation:recent advances and translational perspectives[J].J Am Coll Cardiol,2014,63(22):2335-2345.

    [28]

    Guo Y,Lip GY,Apostolakis S.Inflammation in atrial fibrillation[J].J Am Coll Cardiol,2012,60(22):2263-2270.

    [29]

    Simsek B,Altay S,Ozbilgin N,et al.Autoimmune activation as a determinant of atrial fibrillation among Turks:A prospective evaluation[J].Medicine(Baltimore),2018,97(31):e11779.

    [30]

    Ni H,Pan W,Jin Q,et al.Label-free proteomic analysis of serum exosomes from paroxysmal atrial fibrillation patients[J].Clin Proteomics,2021,18(1):1.

    [31]

    Shaihov-Teper O,Ram E,Ballan N,et al.Extracellular vesicles from epicardial fat facilitate atrial fibrillation[J].Circulation,2021,120:052009.

    [32]

    Wiersma M,Meijering RAM,Qi XY,et al.Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation[J].J Am Heart Assoc,2017,6(10):e006458.

    [33]

    Korantzopoulos P,Letsas K,Fragakis N,et al.Oxidative stress and atrial fibrillation:a update[J].Free Radic Res,2018,52(11-12):1199-1209.

    [34]

    Oikonomou E,Zografos T,Papamikroulis GA,et al.Biomarkers in atrial fibrillation and heart failure[J].Curr Med Chem,2019,26(5):873-887.

    [35]

    Emanueli C,Shearn AI,Laftah A,et al.Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs:an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery[J].PLoS One,2016,11(4):e0154274.

    [36]

    Wei Z,Bing Z,Shaohuan Q,et al.Expression of miRNAs in plasma exosomes derived from patients with atrial fibrillation[J].Clin Cardiol,2020,43(12):1450-1459.

    [37]

    Wang S,Min J,Yu Y,et al.Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm[J].J Thorac Dis,2019,11(10):4337-4348.

    [38]

    Mun D,Kim H,Kang JY,et al.Expression of miRNAs in circulating exosomes derived from patients with persistent atrial fibrillation[J].FASEB J,2019,33(5):5979-5989.

  • 加载中
计量
  • 文章访问数:  349
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2021-04-26

目录