Correlation between apolipoprotein A-I levels and coronary artery slow blood flow in nondiabetic patients
-
摘要: 目的 探讨非糖尿病人群中载脂蛋白A-I水平与冠状动脉(冠脉)慢血流发病的相关性。方法 连续收集2017年1月—2020年2月在新疆医科大学第一附属医院心脏中心就诊,完善冠脉造影提示慢血流的患者278例,同期冠脉造影正常的患者266例作为对照组。结果 非糖尿病人群中,慢血流组相较于对照组其载脂蛋白A-I水平更低(P=0.006)。单因素及多因素logistic回归分析表明载脂蛋白A-I是非糖尿病人群合并慢血流的独立保护因素(OR=0.417,P=0.025)。结论 载脂蛋白A-I在非糖尿病人群冠脉慢血流中起独立保护作用。Abstract: Objective To investigate the correlation between apolipoprotein A-I level and the incidence of coronary artery slow blood flow in non-diabetic population.Methods Patients were collected from the heart Center of the First Affiliated Hospital of Xinjiang Medical University from January 2017 to February 2020. A total of 278 patients underwent coronary angiography indicating slow blood flow, and 266 normal patients underwent coronary angiography at the same time served as the control group.Results In the nondiabetic population, apolipoprotein A-I levels were lower in the slow-flow group than in the normal control group(P=0.006). Univariate and multivariate Logistic regression analysis showed that apolipoprotein A-I was an independent protective factor for slow blood flow in non-diabetic patients(OR=0.417, P=0.025).Conclusion Apolipoprotein A-I has an independent protective effect on the incidence of slow blood flow in non-diabetic population.
-
Key words:
- apolipoprotein A-I /
- coronary slow blood flow /
- non-diabetic population
-
表 1 基本资料
Table 1. General data
X±S, M(P25, P75) 变量 对照组(266例) CSF组(278例) P值 年龄/岁 52.30±9.12 53.01±9.03 0.360 男性/例(%) 167(62.8) 174(62.6) 0.963 吸烟史/例(%) 131(49.2) 129(46.4) 0.507 高血压/例(%) 85(32.0) 112(40.3) 0.043 BMI/(kg·m-2) 25.95±3.42 26.65±3.89 0.025 WBC/(×109·L-1) 6.19±1.62 6.75±1.945 < 0.001 NE/(×109·L-1) 3.53±1.20 3.98±1.53 < 0.001 LY/(×109·L-1) 2.03±0.58 2.11±0.70 0.164 MO/(×109·L-1) 0.41(0.32, 0.52) 0.43(0.34, 0.55) 0.093 红细胞/(×1012·L-1) 4.64±0.50 4.65±0.63 0.932 血红蛋白/(g·L-1) 146.72±92.63 142.20±18.42 0.427 平均红细胞体积/fL 91.83±5.33 91.44±8.49 0.517 平均红细胞血红蛋白/pg 31.00±5.65 30.50±2.79 0.193 平均血红蛋白浓度/(g·L-1) 332.03±14.11 330.55±27.54 0.434 红细胞分布宽度/% 13.24±1.17 13.13±1.23 0.287 血小板计数/(×109·L-1) 214.01±51.76 223.34±57.59 0.048 平均血小板体积/fL 10.09±1.72 10.35±1.54 0.065 血小板压积/% 0.21(0.17, 0.26) 0.22(0.19, 0.27) 0.006 血糖/(mmol·L-1) 5.05±1.02 5.07±1.00 0.845 TG/(mmol·L-1) 1.48(1.01, 2.05) 1.49(1.11, 2.29) 0.446 TC/(mmol·L-1) 4.37±0.96 4.18±0.94 0.023 HDL-C/(mmol·L-1) 1.13±0.46 1.10±0.29 0.340 LDL-C/(mmol·L-1) 2.80±0.96 2.65±0.84 0.054 apoA-I/(g·L-1) 1.26±0.26 1.20±0.23 0.006 脂蛋白/(mg·L-1) 106.57(52.45, 205.14) 130.88(77.4, 216.9) 0.018 总胆红素/(μmol·L-1) 11.80(9.00, 15.70) 10.70(8.10, 14.68) 0.058 肌酐/(μmol·L-1) 72.15±16.99 69.95±15.91 0.120 尿酸/(μmol·L-1) 314.29±96.84 317.99±91.54 0.647 TyG index 3.54(2.43, 5.50) 3.73(2.60, 6.06) 0.434 TyG-BMI 94.79(60.67, 141.66) 103.99(65.38, 159.81) 0.237 TG/HDL-C 1.34(0.88, 1.29) 1.40(0.93, 2.36) 0.604 表 2 单因素及多因素logistic回归分析
Table 2. Logistic regression analysis
变量 单因素OR(95%CI) P值 多因素OR(95%CI) P值 性别 1.008(0.712~1.427) 0.963 1.197(0.789~1.817) 0.398 年龄 1.009(0.990~1.028) 0.360 1.011(0.991~1.032) 0.287 吸烟史 0.892(0.637~1.249) 0.507 0.878(0.611~1.260) 0.479 高血压 1.437(1.010~2.043) 0.044 1.272(0.882~1.833) 0.198 TG 1.058(0.908~1.232) 0.469 1.060(0.899~1.250) 0.491 LDL-C 0.824(0.675~1.007) 0.058 0.863(0.700~1.064) 0.169 BMI 1.054(1.006~1.105) 0.026 1.047(0.995~1.101) 0.076 apoA-I 0.374(0.185~0.757) 0.005 0.417(0.194~0.897) 0.025 -
[1] Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon-a new coronary microvascular disorder[J]. Cardiology, 2002, 97(4): 197-202. doi: 10.1159/000063121
[2] Beltrame J, Ganz P. The coronary slow flow phenomenon[J]. Springer London, 2013, 22: 100.
[3] Mangieri E, Macchiarelli G, Ciavolella M, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries[J]. Cathet Cardiovasc Diagn, 1996, 37(4): 375-381. doi: 10.1002/(SICI)1097-0304(199604)37:4<375::AID-CCD7>3.0.CO;2-8
[4] Xiao W, Geng LL, Nie SP. Coronary slow flow phenomenon: A local or systemic disease?[J]. Medical Hypotheses, 2010, 75(3): 334-337. doi: 10.1016/j.mehy.2010.03.016
[5] Canpolat U, Çetin EH, Cetin S, et al. Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation[J]. Clinical & Applied Thrombosis/hemostasis, 2016, 22(5): 476. doi: 10.1177/1076029615594002
[6] Gordon SM, Hofmann S, Askew DS, et al. High density lipoprotein: it's not just about lipid transport anymore[J]. Trends in Endocrinology & Metabolism, 2011, 22(1): 9-15.
[7] Georgil A, Vyrl A, Drako S. Apolipoprotein A-I(ApoA-Ⅰ), Immunity, Inflammation and Cancer[J]. Cancers, 2019, 11(8): 1097-1099. doi: 10.3390/cancers11081097
[8] Rosenson RS, Brewer Jr HB, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease[J]. Nat Rev Cardiol, 2016, 13: 48-60. doi: 10.1038/nrcardio.2015.124
[9] Schwertani A, Choi HY, Genest J. HDLs and the pathogenesis of atherosclerosis[J]. Curr Opin Cardiol, 2018, 33(3): 311-316. doi: 10.1097/HCO.0000000000000508
[10] 殷培明, 王曙光, 张爱元. 冠状动脉慢血流与冠状动脉微循环障碍的相关性研究[J]. 中国循环杂志, 2016, 31(6): 555-558. doi: 10.3969/j.issn.1000-3614.2016.06.008
[11] 李勇, 刘敏. 冠状动脉慢血流与冠状动脉微循环障碍的相关性分析[J]. 中国实用医药, 2018, 13(7): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSSA201807018.htm
[12] Yazici M, Aksakal E, Demircan S, et al. Is slow coronary flow related with inflammation and procoagulant state?[J]. Anadolu Kardiyol Derg, 2005, 5(1): 3-7. https://pubmed.ncbi.nlm.nih.gov/15755693/
[13] 中华医学会心血管病学分会. 中国心血管病一级预防指南[J]. 中华心血管病杂志, 2020, 48(12): 1000-1038. doi: 10.3760/cma.j.cn112148-20201009-00796
[14] Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon-a new coronary microvascular disorder[J]. Cardiology, 2002, 97(4): 197-202. doi: 10.1159/000063121
[15] Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies[J]. Circulation, 1989, 79(1): 8. doi: 10.1161/01.CIR.79.1.8
[16] Medicine M. Molecular medicine: the metabolic and molecular bases of inherited disease[J]. The Journal of the American Medical Association, 2001, 286: 100. doi: 10.1001/jama.286.18.2329
[17] Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events[J]. N Engl J Med, 2007, 357: 2109-2122. doi: 10.1056/NEJMoa0706628
[18] Haase CL, Anne TH, Abbas AQ, et al. LCAT, HDL Cholesterol and ischemic cardiovascular disease: a mendelian randomization study of HDL cholesterol in 54, 500 individuals[J]. Journal of Clinical Endocrinology & Metabolism, 2012, 97: E248-256.
[19] Oram JF. ATP-binding cassette transporter A1 and cholesterol trafficking[J]. Current Opinion in Lipidology, 2002, 13(4): 373-381. doi: 10.1097/00041433-200208000-00004
[20] Haase CL, Anne TH, Peer G, et al. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease[J]. Journal of Clinical Endocrinology & Metabolism, 2010(12): 500-510. doi: 10.1210/jc.2010-0450
[21] Mkkab C, Michael V, Qin W, et al. Apolipoprotein A-I concentrations and risk of coronary artery disease: A Mendelian randomization study[J]. Atherosclerosis, 2020, 299: 56-63. doi: 10.1016/j.atherosclerosis.2020.02.002
[22] Lemmers RFH, van Hoek M, Lieverse AG, et al. The anti-inflammatory function of high-density lipoprotein in type Ⅱ diabetes: A systematic review[J]. Journal of Clinical Lipidology, 2017, 712: 100. doi: 10.1016/j.jacl.2017.03.013
[23] Barrett TJ, Distel E, Murphy AJ, et al. Apolipoprotein AI promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation[J]. Circulation, 2019, 140(14): 1170-1184. doi: 10.1161/CIRCULATIONAHA.119.039476
[24] Niculescu LS, Robciuc MR, San Da GM, et al. Apolipoprotein A-I stimulates cholesteryl ester transfer protein and apolipoprotein E secretion from lipid-loaded macrophages; the role of NF-κB and PKA signaling pathways[J]. Biochemical and Biophysical Research Communications, 2011, 415(3): 497-502. doi: 10.1016/j.bbrc.2011.10.101
[25] Linthout SV, Foryst-Ludwig A, Spillmann F, et al. Impact of HDL on adipose tissue metabolism and adiponectin expression[J]. Atherosclerosis, 2010, 210(2): 438-444. doi: 10.1016/j.atherosclerosis.2010.01.001
[26] Stenkula KG, Lindahl M, Petrlova J, et al. Single injections of apoA-Ⅰ acutely improve in vivo glucose tolerance in insulin-resistant mice[J]. Diabetologia, 2014, 57: 797-800. doi: 10.1007/s00125-014-3162-7
[27] Carey AL, Siebel AL, Medini RL, et al. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein[J]. PLoS One, 2013, 8(2): e56601. doi: 10.1371/journal.pone.0056601