Research progress on the regulation of immune system by gut microbiota in cardiovascular disease
-
摘要: 既往研究证实,定居在消化道内的肠道菌群能产生活性代谢物直接影响心血管疾病(CVD)进展。但近年来大量研究表明肠道菌群对免疫系统的调节作用同样影响CVD的发病。本文重点介绍肠道菌群及其代谢产物对免疫系统的影响以及对CVD发病的作用。加深对“肠-心轴”的认识与研究,为微生物治疗疾病寻找到新的方向。Abstract: Previous studies have shown that the active metabolites produced by the gut microbiota living in the intestinal tract can directly drive cardiovascular disease (CVD). But recently, qualitative studies have confirmed that the gut microbiota also leads to CVD development through immunomodulatory. This review focus on the impact of gut microbiota and microbial-derived metabolites on immune function and CVD pathology. A complete understanding and further research of the gut-heart axis can lead to a novel direction of microbiome-based therapy.
-
Key words:
- gut microbiota /
- cardiovascular disease /
- immune system /
- microbial derived metabolites
-
[1] Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery[J]. Nat Med, 2017, 23(3): 314-326. doi: 10.1038/nm.4272
[2] Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. doi: 10.1056/NEJMra1600266
[3] Kim M, Huda MN, Bennett BJ. Sequence meets function-microbiota and cardiovascular disease[J]. Cardiovasc Res, 2022, 118(2): 399-412. doi: 10.1093/cvr/cvab030
[4] Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine[J]. Annu Rev Immunol, 2020, 38: 23-48. doi: 10.1146/annurev-immunol-070119-115104
[5] Zegarra-Ruiz DF, Kim DV, Norwood K, et al. Thymic development of gut-microbiota-specific T cells[J]. Nature, 2021, 594(7863): 413-417. doi: 10.1038/s41586-021-03531-1
[6] Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases[J]. Annu Rev Med, 2015, 66: 343-359. doi: 10.1146/annurev-med-060513-093205
[7] Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3): 171-181. doi: 10.1038/nrmicro.2017.149
[8] Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10679-10684. doi: 10.1073/pnas.0403249101
[9] Ding Y, Subramanian S, Montes VN, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2012, 32(7): 1596-1604. doi: 10.1161/ATVBAHA.112.249847
[10] Chen L, Ishigami T, DoiH, et al. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis[J]. J Mol Med(Berl), 2020, 98(9): 1235-1244.
[11] Bu J, Wang Z. Cross-Talk between Gut Microbiota and Heart via the Routes of Metabolite and Immunity[J]. Gastroenterol Res Pract, 2018, 2018: 6458094.
[12] Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523. doi: 10.1038/nm.4068
[13] Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense[J]. Science, 2018, 359(6371): 114-119. doi: 10.1126/science.aam5809
[14] Emal D, Rampanelli E, Stroo I, et al. Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury[J]. J Am Soc Nephrol, 2017, 28(5): 1450-1461. doi: 10.1681/ASN.2016030255
[15] Yu H, Gagliani N, Ishigame H, et al. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development[J]. Proc Natl Acad Sci U S A, 2017, 114(39): 10443-10448. doi: 10.1073/pnas.1705599114
[16] Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy[J]. Science, 2019, 366(6467): 881-886. doi: 10.1126/science.aav3487
[17] Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. doi: 10.1038/nature12726
[18] Kazemian N, Mahmoudi M, Halperin F, et al. Gut microbiota and cardiovascular disease: opportunities and challenges[J]. Microbiome, 2020, 8(1): 36. doi: 10.1186/s40168-020-00821-0
[19] Boini KM, Hussain T, Li PL, et al. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162. doi: 10.1159/000484623
[20] Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017, 37(2).
[21] Yan X, Jin J, Su X, et al. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension[J]. Circ Res, 2020, 126(7): 839-853. doi: 10.1161/CIRCRESAHA.119.316394
[22] Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551(7682): 585-589. doi: 10.1038/nature24628
[23] Pluznick JL. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation[J]. Curr Hypertens Rep, 2017, 19(4): 25. doi: 10.1007/s11906-017-0722-5
[24] Ge X, Zheng L, Zhuang R, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-analysis[J]. Adv Nutr, 2020, 11(1): 66-76.
[25] Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease[J]. Circulation, 2006, 113(7): 929-937. doi: 10.1161/CIRCULATIONAHA.105.579979
[26] Kumar D, Mukherjee SS, Chakraborty R, et al. The emerging role of gut microbiota in cardiovascular diseases[J]. Indian Heart J, 2021, 73(3): 264-272. doi: 10.1016/j.ihj.2021.04.008
[27] Heianza Y, Ma W, DiDonato JA, et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk[J]. J Am Coll Cardiol, 2020, 75(7): 763-772. doi: 10.1016/j.jacc.2019.11.060
[28] Tang W, Bäckhed F, Landmesser U, et al. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 73(16): 2089-2105. doi: 10.1016/j.jacc.2019.03.024
[29] 朱媛婷, 唐路, 邱雪婷, 等. 氧化三甲胺: 肠道微生物、内皮功能障碍和动脉粥样硬化之间的联系[J]. 临床心血管病杂志, 2020, 36(10): 879-881. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202010001.htm
[30] McMillan A, Hazen SL. Gut Microbiota Involvement in Ventricular Remodeling Post-Myocardial Infarction[J]. Circulation, 2019, 139(5): 660-662. doi: 10.1161/CIRCULATIONAHA.118.037384
[31] Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. doi: 10.1096/fj.11-197921
[32] 高中山, 任明, 刘杏利, 等. 短链脂肪酸在冠心病防治中的研究进展[J]. 临床心血管病杂志, 2021, 37(11): 1062-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202111019.htm
[33] Zheng D, Liu Z, Zhou Y, et al. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway[J]. Pharmacol Res, 2020, 153: 104655. doi: 10.1016/j.phrs.2020.104655
[34] Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7: 113-170
[35] Zhang Y, Wang Y, Ke B, et al. TMAO: how gut microbiota contributes to heart failure[J]. Transl Res, 2021, 228: 109-125. doi: 10.1016/j.trsl.2020.08.007
[36] Marques FZ, Nelson E, Chu PY, et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice[J]. Circulation, 2017, 135(10): 964-977. doi: 10.1161/CIRCULATIONAHA.116.024545
[37] Carley AN, Maurya SK, Fasano M, et al. Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart[J]. Circulation, 2021, 143(18): 1797-1808. doi: 10.1161/CIRCULATIONAHA.120.052671
[38] Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure[J]. J Card Fail, 2017, 23(9): 666-71. doi: 10.1016/j.cardfail.2017.06.007
[39] Eblimit Z, Thevananther S, Karpen SJ, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice[J]. Cardiovasc Ther, 2018, 36(5): e12462.
[40] von Haehling S, Schefold JC, Jankowska EA, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial[J]. J Am Coll Cardiol, 2012, 59(6): 585-592.
[41] Linz D, Gawałko M, Sanders P, et al. Does gut microbiota affect atrial rhythm? Causalities and speculations[J]. Eur Heart J, 2021, 42(35): 3521-3525.
计量
- 文章访问数: 1923
- PDF下载数: 1595
- 施引文献: 0