肠道菌群调节免疫系统影响心血管疾病的研究进展

晏家升, 吕冰洁, 程翔. 肠道菌群调节免疫系统影响心血管疾病的研究进展[J]. 临床心血管病杂志, 2022, 38(8): 614-618. doi: 10.13201/j.issn.1001-1439.2022.08.004
引用本文: 晏家升, 吕冰洁, 程翔. 肠道菌群调节免疫系统影响心血管疾病的研究进展[J]. 临床心血管病杂志, 2022, 38(8): 614-618. doi: 10.13201/j.issn.1001-1439.2022.08.004
YAN Jiasheng, LV Bingjie, CHENG Xiang. Research progress on the regulation of immune system by gut microbiota in cardiovascular disease[J]. J Clin Cardiol, 2022, 38(8): 614-618. doi: 10.13201/j.issn.1001-1439.2022.08.004
Citation: YAN Jiasheng, LV Bingjie, CHENG Xiang. Research progress on the regulation of immune system by gut microbiota in cardiovascular disease[J]. J Clin Cardiol, 2022, 38(8): 614-618. doi: 10.13201/j.issn.1001-1439.2022.08.004

肠道菌群调节免疫系统影响心血管疾病的研究进展

  • 基金项目:
    国家自然科学基金(No:82100298)
详细信息

Research progress on the regulation of immune system by gut microbiota in cardiovascular disease

More Information
  • 既往研究证实,定居在消化道内的肠道菌群能产生活性代谢物直接影响心血管疾病(CVD)进展。但近年来大量研究表明肠道菌群对免疫系统的调节作用同样影响CVD的发病。本文重点介绍肠道菌群及其代谢产物对免疫系统的影响以及对CVD发病的作用。加深对“肠-心轴”的认识与研究,为微生物治疗疾病寻找到新的方向。
  • 加载中
  • [1]

    Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery[J]. Nat Med, 2017, 23(3): 314-326. doi: 10.1038/nm.4272

    [2]

    Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. doi: 10.1056/NEJMra1600266

    [3]

    Kim M, Huda MN, Bennett BJ. Sequence meets function-microbiota and cardiovascular disease[J]. Cardiovasc Res, 2022, 118(2): 399-412. doi: 10.1093/cvr/cvab030

    [4]

    Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine[J]. Annu Rev Immunol, 2020, 38: 23-48. doi: 10.1146/annurev-immunol-070119-115104

    [5]

    Zegarra-Ruiz DF, Kim DV, Norwood K, et al. Thymic development of gut-microbiota-specific T cells[J]. Nature, 2021, 594(7863): 413-417. doi: 10.1038/s41586-021-03531-1

    [6]

    Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases[J]. Annu Rev Med, 2015, 66: 343-359. doi: 10.1146/annurev-med-060513-093205

    [7]

    Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3): 171-181. doi: 10.1038/nrmicro.2017.149

    [8]

    Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10679-10684. doi: 10.1073/pnas.0403249101

    [9]

    Ding Y, Subramanian S, Montes VN, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2012, 32(7): 1596-1604. doi: 10.1161/ATVBAHA.112.249847

    [10]

    Chen L, Ishigami T, DoiH, et al. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis[J]. J Mol Med(Berl), 2020, 98(9): 1235-1244.

    [11]

    Bu J, Wang Z. Cross-Talk between Gut Microbiota and Heart via the Routes of Metabolite and Immunity[J]. Gastroenterol Res Pract, 2018, 2018: 6458094.

    [12]

    Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523. doi: 10.1038/nm.4068

    [13]

    Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense[J]. Science, 2018, 359(6371): 114-119. doi: 10.1126/science.aam5809

    [14]

    Emal D, Rampanelli E, Stroo I, et al. Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury[J]. J Am Soc Nephrol, 2017, 28(5): 1450-1461. doi: 10.1681/ASN.2016030255

    [15]

    Yu H, Gagliani N, Ishigame H, et al. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development[J]. Proc Natl Acad Sci U S A, 2017, 114(39): 10443-10448. doi: 10.1073/pnas.1705599114

    [16]

    Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy[J]. Science, 2019, 366(6467): 881-886. doi: 10.1126/science.aav3487

    [17]

    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. doi: 10.1038/nature12726

    [18]

    Kazemian N, Mahmoudi M, Halperin F, et al. Gut microbiota and cardiovascular disease: opportunities and challenges[J]. Microbiome, 2020, 8(1): 36. doi: 10.1186/s40168-020-00821-0

    [19]

    Boini KM, Hussain T, Li PL, et al. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162. doi: 10.1159/000484623

    [20]

    Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017, 37(2).

    [21]

    Yan X, Jin J, Su X, et al. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension[J]. Circ Res, 2020, 126(7): 839-853. doi: 10.1161/CIRCRESAHA.119.316394

    [22]

    Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease[J]. Nature, 2017, 551(7682): 585-589. doi: 10.1038/nature24628

    [23]

    Pluznick JL. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation[J]. Curr Hypertens Rep, 2017, 19(4): 25. doi: 10.1007/s11906-017-0722-5

    [24]

    Ge X, Zheng L, Zhuang R, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-analysis[J]. Adv Nutr, 2020, 11(1): 66-76.

    [25]

    Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease[J]. Circulation, 2006, 113(7): 929-937. doi: 10.1161/CIRCULATIONAHA.105.579979

    [26]

    Kumar D, Mukherjee SS, Chakraborty R, et al. The emerging role of gut microbiota in cardiovascular diseases[J]. Indian Heart J, 2021, 73(3): 264-272. doi: 10.1016/j.ihj.2021.04.008

    [27]

    Heianza Y, Ma W, DiDonato JA, et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk[J]. J Am Coll Cardiol, 2020, 75(7): 763-772. doi: 10.1016/j.jacc.2019.11.060

    [28]

    Tang W, Bäckhed F, Landmesser U, et al. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 73(16): 2089-2105. doi: 10.1016/j.jacc.2019.03.024

    [29]

    朱媛婷, 唐路, 邱雪婷, 等. 氧化三甲胺: 肠道微生物、内皮功能障碍和动脉粥样硬化之间的联系[J]. 临床心血管病杂志, 2020, 36(10): 879-881. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202010001.htm

    [30]

    McMillan A, Hazen SL. Gut Microbiota Involvement in Ventricular Remodeling Post-Myocardial Infarction[J]. Circulation, 2019, 139(5): 660-662. doi: 10.1161/CIRCULATIONAHA.118.037384

    [31]

    Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. doi: 10.1096/fj.11-197921

    [32]

    高中山, 任明, 刘杏利, 等. 短链脂肪酸在冠心病防治中的研究进展[J]. 临床心血管病杂志, 2021, 37(11): 1062-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202111019.htm

    [33]

    Zheng D, Liu Z, Zhou Y, et al. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway[J]. Pharmacol Res, 2020, 153: 104655. doi: 10.1016/j.phrs.2020.104655

    [34]

    Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7: 113-170

    [35]

    Zhang Y, Wang Y, Ke B, et al. TMAO: how gut microbiota contributes to heart failure[J]. Transl Res, 2021, 228: 109-125. doi: 10.1016/j.trsl.2020.08.007

    [36]

    Marques FZ, Nelson E, Chu PY, et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice[J]. Circulation, 2017, 135(10): 964-977. doi: 10.1161/CIRCULATIONAHA.116.024545

    [37]

    Carley AN, Maurya SK, Fasano M, et al. Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart[J]. Circulation, 2021, 143(18): 1797-1808. doi: 10.1161/CIRCULATIONAHA.120.052671

    [38]

    Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure[J]. J Card Fail, 2017, 23(9): 666-71. doi: 10.1016/j.cardfail.2017.06.007

    [39]

    Eblimit Z, Thevananther S, Karpen SJ, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice[J]. Cardiovasc Ther, 2018, 36(5): e12462.

    [40]

    von Haehling S, Schefold JC, Jankowska EA, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial[J]. J Am Coll Cardiol, 2012, 59(6): 585-592.

    [41]

    Linz D, Gawałko M, Sanders P, et al. Does gut microbiota affect atrial rhythm? Causalities and speculations[J]. Eur Heart J, 2021, 42(35): 3521-3525.

  • 加载中
计量
  • 文章访问数:  1923
  • PDF下载数:  1595
  • 施引文献:  0
出版历程
收稿日期:  2022-06-08
刊出日期:  2022-08-13

目录