房室结折返性心动过速的遗传学研究进展

朱云才, 陈雪品, 罗蓉, 等. 房室结折返性心动过速的遗传学研究进展[J]. 临床心血管病杂志, 2022, 38(8): 619-622. doi: 10.13201/j.issn.1001-1439.2022.08.005
引用本文: 朱云才, 陈雪品, 罗蓉, 等. 房室结折返性心动过速的遗传学研究进展[J]. 临床心血管病杂志, 2022, 38(8): 619-622. doi: 10.13201/j.issn.1001-1439.2022.08.005
ZHU Yuncai, CHEN Xuepin, LUO Rong, et al. Progress in genetics of atrioventricular nodal reentrant tachycardia[J]. J Clin Cardiol, 2022, 38(8): 619-622. doi: 10.13201/j.issn.1001-1439.2022.08.005
Citation: ZHU Yuncai, CHEN Xuepin, LUO Rong, et al. Progress in genetics of atrioventricular nodal reentrant tachycardia[J]. J Clin Cardiol, 2022, 38(8): 619-622. doi: 10.13201/j.issn.1001-1439.2022.08.005

房室结折返性心动过速的遗传学研究进展

  • 基金项目:
    国家自然科学基金(No:81770379);广东省钟南山医学基金会资助(No:ZNSA-2020017)
详细信息

Progress in genetics of atrioventricular nodal reentrant tachycardia

More Information
  • 房室结折返性心动过速(AVNRT)是临床中最常见的一种阵发性室上性心动过速,其发病机制至今仍未阐明。既往认为AVNRT与先天性心脏传导通路发育异常有关。近年来,随着家族性AVNRT不断报道,提示该病与遗传因素有关,新近的基因测序结果显示离子通道相关基因突变可能与其发生有关。本文将对AVNRT的遗传学研究进行综述。
  • 加载中
  • [1]

    Kurian T, Ambrosi C, Hucker W, et al. Anatomy and electrophysiology of the human AV node[J]. Pacing Clin Electrophysiol, 2010, 33(6): 754-762. doi: 10.1111/j.1540-8159.2010.02699.x

    [2]

    Pandozi C, Lavalle C, Bongiorni MG, et al. High-density mapping of Koch's triangle during sinus rhythm and typical AV nodal reentrant tachycardia: new insight[J]. J Interv Card Electrophysiol, 2021, 61(3): 487-497. doi: 10.1007/s10840-020-00841-8

    [3]

    Bogun F, Daoud E, Goyal R, et al. Comparison of atrial-His intervals in patients with and without dual atrioventricular nodal physiology and atrioventricular nodal reentrant tachycardia[J]. Am Heart J, 1996, 132(4): 758-764. doi: 10.1016/S0002-8703(96)90307-5

    [4]

    Siebels H, Sohns C, Nürnberg JH, et al. Value of an old school approach: safety and long-term success of radiofrequency current catheter ablation of atrioventricular nodal reentrant tachycardia in children and young adolescents[J]. J Interv Card Electrophysiol, 2018, 53(2): 267-277. doi: 10.1007/s10840-018-0367-6

    [5]

    Hunt MM. Familial occurrence of accessory atrioventricular pathways(preexcitation syndrome)[J]. Ann Emerg Med, 1987, 16(11): 1307-1307.

    [6]

    Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association[J]. Circulation, 2020, 141(9): e139-e596.

    [7]

    Michowitz Y, Anis-Heusler A, Reinstein E, et al. Familial Occurrence of Atrioventricular Nodal Reentrant Tachycardia[J]. Circ Arrhythm Electrophysiol, 2017, 10(2): e004680.

    [8]

    Hayes JJ, Sharma PP, Smith PN, et al. Familial atrioventricular nodal reentry tachycardia[J]. Pacing Clin Electrophysiol, 2004, 27(1): 73-76. doi: 10.1111/j.1540-8159.2004.00388.x

    [9]

    Frisch DR, Kwaku KF, Allocco DJ, et al. Atrioventricular nodal reentrant tachycardia in two siblings with Wolfram syndrome[J]. J Cardiovasc Electrophysiol, 2006, 17(9): 1029-1031. doi: 10.1111/j.1540-8167.2006.00522.x

    [10]

    Namgung J, Kwak JJ, Choe H, et al. Familial occurrence of atrioventricular nodal reentrant tachycardia in a mother and her son[J]. Korean Circ J, 2012, 42(10): 718-721. doi: 10.4070/kcj.2012.42.10.718

    [11]

    Barake W, Caldwell J, Baranchuk A. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review[J]. Indian Pacing Electrophysiol J, 2013, 13(1): 45-51. doi: 10.1016/S0972-6292(16)30589-7

    [12]

    Stec S, Deutsch K, Zienciuk-Krajka A. The world's largest family with familial atrio-ventricular nodal reentry tachycardia[J]. Kardiol Pol, 2015, 73(12): 1339. doi: 10.5603/KP.2015.0249

    [13]

    Chen XP, Yan C, Luo R, et al. Clinical report of 8 families with atrioventricular nodal reentrant tachycardia from China[J]. Kardiol Pol, 2021, 79(2): 185-187. doi: 10.33963/KP.15739

    [14]

    Andreasen L, Ahlberg G, Tang C, et al. Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes[J]. Eur J Hum Genet, 2018, 26(5): 660-668. doi: 10.1038/s41431-017-0092-0

    [15]

    Luo R, Zheng C, Yang H, et al. Identification of potential candidate genes and pathways in atrioventricular nodal reentry tachycardia by whole-exome sequencing[J]. Clin Transl Med, 2020, 10(1): 238-257. doi: 10.1002/ctm2.25

    [16]

    Liu J, Noble PJ, Xiao G, et al. Role of pacemaking current in cardiac nodes: insights from a comparative study of sinoatrial node and atrioventricular node[J]. Prog Biophys Mol Biol, 2008, 96(1-3): 294-304. doi: 10.1016/j.pbiomolbio.2007.07.009

    [17]

    Eisner DA, Caldwell JL, Kistamás K, et al. Calcium and Excitation-Contraction Coupling in the Heart[J]. Circ Res, 2017, 121(2): 181-195. doi: 10.1161/CIRCRESAHA.117.310230

    [18]

    Zhang H, Holden AV, Noble D, et al. Analysis of the chronotropic effect of acetylcholine on sinoatrial node cells[J]. J Cardiovasc Electrophysiol, 2002, 13(5): 465-474. doi: 10.1046/j.1540-8167.2002.00465.x

    [19]

    Lee TY, Hogarth K, Szabo E, et al. Sex-Specific Arrhythmias Caused by Cardiac Sodium Channel Nav 1.5 Mutation Alters Cardiomyocyte Metabolism[J]. FASEB J, 2022, 36 Suppl 1.

    [20]

    Vanninen S, Nikus K, Aalto-Setälä K. Electrocardiogram changes and atrial arrhythmias in individuals carrying sodium channel SCN5A D1275N mutation[J]. Ann Med, 2017, 49(6): 496-503. doi: 10.1080/07853890.2017.1307515

    [21]

    Hasdemir C, Payzin S, Kocabas U, et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia[J]. Heart Rhythm, 2015, 12(7): 1584-1594.

    [22]

    Frasier CR, Zhang H, Offord J, et al. Channelopathy as a SUDEP Biomarker in Dravet Syndrome Patient-Derived Cardiac Myocytes[J]. Stem Cell Reports, 2018, 11(3): 626-634. doi: 10.1016/j.stemcr.2018.07.012

    [23]

    Daverio M, Ciccone O, Boniver C, et al. Supraventricular Tachycardia During Status Epilepticus in Dravet Syndrome: A Link Between Brain and Heart?[J]. Pediatr Neurol, 2016, 56: 69-71. doi: 10.1016/j.pediatrneurol.2015.12.003

    [24]

    Airriess C, Mcmahon B. Short-term emersion affects cardiac function and regional haemolymph distribution in the crab Cancer magister[J]. J Exp Biol, 1996, 199(Pt 3): 569-578.

    [25]

    Light PE, Wallace CH, Dyck JR. Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes[J]. Circulation, 2003, 107(15): 1962-1965.

    [26]

    Hailati J, Yang YC, Zhang L, et al. Association between-44G/A and +71A/G polymorphisms in the connexin 40 gene and atrial fibrillation in Uyghur and Han populations in Xinjiang, China[J]. Genet Mol Res, 2016, 15(4).

    [27]

    Landstrom AP, Dobrev D, Wehrens X. Calcium Signaling and Cardiac Arrhythmias[J]. Circ Res, 2017, 120(12): 1969-1993.

    [28]

    Weiss JN, Garfinkel A, Karagueuzian HS, et al. Perspective: a dynamics-based classification of ventricular arrhythmias[J]. J Mol Cell Cardiol, 2015, 82: 136-152.

    [29]

    Günther A, Baumann A. Distinct expression patterns of HCN channels in HL-1 cardiomyocytes[J]. BMC Cell Biol, 2015, 16: 18.

    [30]

    李小平, 颜超, 罗蓉, 等. 房室结折返性心动过速3个家系的报道[J]. 临床心血管病杂志, 2020, 36(5): 471-475. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202005016.htm

  • 加载中
计量
  • 文章访问数:  1425
  • PDF下载数:  746
  • 施引文献:  0
出版历程
收稿日期:  2021-10-27
刊出日期:  2022-08-13

目录