New scores for prediction of left atrial thrombus/spontaneous echo contrast in patients with nonvalvular atrial fibrillation: A single-center retrospective analysis
-
摘要: 目的探索预测左房血栓(left atrial thrombus,LAT)/自发显影(spontaneous echo contrast,SEC)的新因素,比较CHADS2/CHADS2-VASc加入新的危险因素后,新的模型预测LAT/SEC的能力是否提升;并探索新因素对于CHADS2/CHADS2-VASc模型中的低风险患者LAT/SEC的预测。方法回顾过去10年我院接受经食管超声检查的非瓣膜性心房颤动患者,筛选LAT/SEC的患者,以年龄及性别1∶1匹配左房未见LAT/SEC的患者。使用二元logistic回归分析识别影响LAT/SEC的危险因素。将新的因素纳入CHADS2及CHADS2-VASc模型,利用ROC曲线评价模型预测LAT/SEC的能力是否有所提升。并在低风险患者中(CHADS2-VASc男性0分,女性1分),利用ROC曲线评价新因素对这部分患者LAT/SEC的预测能力。结果研究共纳入了1270例非瓣膜性房颤患者,其中LAT/SEC 635例,左房未见LAT/SEC 635例。回归分析提示左房增大(LAE)、血尿酸增高(HSUA)及血纤维蛋白原(FIB)是LAT/SEC的独立危险因素。CHADS2+LAE、CHADS2+HSUA、CHASD2+FIB、CHADS2+LAE+HSUA+FIB预测LAT/SEC的ROC曲线下面积(AUC)分别为:0.739、0.647、0.654、0.767,较原模型CHADS2(AUC=0.614)提高(P* < 0.05)。CAHDS2-VASc+LAE、CHADS2-VASc+HSUA、CHADS2-VASc+FIB、CHADS2-VASc+LAE+HSUA+FIB预测LAT/SEC的ROC AUC分别为0.785、0.719、0.710、0.801,较原模型CHADS2-VASc(AUC=0.695)提高(P* < 0.05)。在整组患者中,LAE+HSUA+FIB预测LAT/SEC的ROC AUC为0.756(P < 0.05),在CHADS2-VASc评分为0(男性)或1(女性)分患者中,LAE+HSUA+FIB*预测LAT/SEC的ROC AUC为0.752(P < 0.05)。结论① LAE、HSUA、FIB是LAT/SEC的独立危险因素。②分别加入LAE、HSUA、FIB后,CHADS2及CHADS2-VASc模型预测能力均有提升。其中,以单独加入LAE带来的提升最显著;三者均加入时,模型预测更准确。③LAE、HSUA、FIB三者可预测CHADS2-VASc评分为0(男)或1分(女)患者中LAT/SEC的发生,有助于筛选真正的低风险患者。Abstract: ObjectiveTo explore new risk factors for predicting left atrial thrombus(LAT)/ Spontaneous echo contrast(SEC), to compare whether the ability of CHADS2 and CHADS2-VASc plus new risk factors to predict LAT/SEC was improved, and explore new factors for the prediction of LAT/SEC in low-risk patients in the CHADS2/CHADS2-VASc model.MethodsWe reviewed patients who had undergone a transesophageal echocardiography exam over the past 10 years, with those descriptions contained"echo contrast". The patients without LAT/SEC were matched 1: 1 by age and sex. Binary logistic regression analysis was used to identify risk markers. The new markers were incorporated into the CHADS2 and CHADS2-VASc scales, and the ROC curve was used to evaluate the predictive power of those new scales. And in patients with a CHADS2-VASc score of 0(male) or 1(female), the ability of new factors to predict LAT/SEC was evaluated.ResultsA total of 1270 patients were included in the study, 635 of them had LAT/SEC. Regression analysis revealed left atrial enlargement(LAE), high serum uric acid level(HSUA), and fibrinogen level(FIB) were the independent risk markers for LAT/SEC. Receiver operating characteristic analysis showed that area under the curve(AUC) of CHADS2+LAE, CHADS2+ HSUA, CHADS2+FIB and CHADS2+LAE+ ISUA +FIB scores were 0.739, 0.647, 0.654 and 0.767, respectively, compared with CHADS2(AUC=0.614), all P* < 0.05. And the AUC of CHADS2-VASc+LAE, CHADS2-VASc + HSUA, CHADS2-VASc +FIB and CHADS2-VASc+LAE+ HSUA +FIB scores were 0.785, 0.719, 0.710 and 0.801, respectively, compared with CHADS2-VASc(AUC=0.695), all P* < 0.05. In all patients, the AUC of LAE+HSUA+FIB scores was 0.756, compared with null hypothesis: true area=0.5, P < 0.05, and in patients with CHADS2-VASc score of 0(male) or 1(female), the receiver operating characteristic curve analysis showed that area under the curve(AUC) of LAE+ ISUA +FIB* scores were 0.752, compared with null hypothesis: true area=0.5, P < 0.05.Conclusion① LAE, HSUA, FIB were independent risk markers for LAT/SEC. ②After adding LAE, HSUA and FIB respectively, the prediction power of CHADS2 and CHADS2-VASc models were all improved. Among them, the most significant improvement was brought by adding LAE alone; when all three are added, the model prediction is most accurate. ③LAE, HSUA, and FIB can predict the occurrence of LAT/SEC in patients with CHADS2-VASc score of 0 or 1(female), which is helpful for screening truly low-risk patients.
-
表 1 基线资料
Table 1. General data
例(%), X±S 变量 阳性组 阴性组 P值 年龄/岁 65.7±9.6 65.7±9.6 1.000 ≥75岁 122(19.2) 122(19.2) 1.000 ≥65岁 248(39.1) 248(39.1) 1.000 女性 306(48.2) 306(48.2) 1.000 高血压 358(56.4) 319(50.2) 0.028 糖尿病 111(17.5) 94(14.8) 0.195 充血性心衰 66(10.4) 11(1.7) < 0.001 血管病 94(14.8) 77(12.1) 0.162 卒中/TIA/血栓事件 92(14.5) 51(8.0) < 0.001 抗凝 182(28.7) 148(23.3) 0.015 CHADS2 1.3±1.2 0.8±0.9 < 0.001 CHADS2-VASc 2.5±1.7 1.5±1.1 < 0.001 CHADS2-VASc评分为0或1(女) 112(17.6) 245(38.6) < 0.001 Vmax 0.3±0.2 0.4±0.3 < 0.001 左房直径/mm 44.9±5.9 38.7±6.0 < 0.001 LAE 523(82.4) 273(43.0) < 0.001 LVEF/% 58.8±10.5 64.3±7.4 < 0.001 URIC/(μmol· L-1) 378.3±100.4 344.0±85.7 < 0.001 HSUA 205(32.3) 111(17.5) < 0.001 FIB/(g·L-1) 3.0±0.8 2.7±0.7 < 0.001 注:Vmax:左心耳排空速度;LVEF:左室射血分数。 表 2 LAT/SEC单因素logistic回归
Table 2. Univariate logistic regression
因素 OR 95%CI P值 高血压 1.280 1.027~1.597 0.028 糖尿病 1.219 0.903~1.645 0.195 充血性心衰 6.580 3.441~12.583 < 0.001 血管病 1.259 0.911~1.740 0.163 卒中/TIA/血栓事件 1.940 1.351~2.785 < 0.001 抗凝 1.363 1.061~1.752 0.015 LAE 6.192 4.786~8.011 < 0.001 HSUA 2.251 1.729~2.930 < 0.001 FIB 1.682 1.433~1.973 < 0.001 表 3 LAT/SEC多因素logistic回归
Table 3. Multivariate logistic regression
因素 OR 95%CI P值 高血压 1.047 0.808~1.357 0.729 充血性心衰 3.158 1.545~6.454 0.002 卒中/TIA/血栓事件 1.817 1.198~2.756 0.005 抗凝 1.119 0.839~1.493 0.445 LAE 5.573 4.232~7.338 0.000 HSUA 1.884 1.396~2.544 0.000 FIB 1.600 1.337~1.913 0.000 表 4 模型预测LAT/SEC效能比较
Table 4. Comparison of thrombosis/spontaneous imaging performance predictive model
模型 AUC P 95%CI P* CHADS2 0.614 < 0.001 0.586~0.640 CHADS2+LAE 0.739 < 0.001 0.713~0.763 < 0.0001 CHADS2+HSUA 0.647 < 0.001 0.620~0.674 0.0002 CHADS2+FIB 0.654 < 0.001 0.627~0.680 < 0.0001 CHADS2+LAE+HSUA+FIB 0.767 < 0.001 0.743~0.790 < 0.0001 CHADS2-VASc 0.695 < 0.001 0.668~0.720 CHADS2-VASc+LAE 0.785 < 0.001 0.761~0.807 < 0.0001 CHADS2-VASc+HSUA 0.719 < 0.001 0.694~0.744 0.0003 CHADS2-VASc+FIB 0.710 < 0.001 0.684~0.735 0.0016 CHADS2-VASc+LAE+HSUA+FIB 0.801 < 0.001 0.778~0.823 0.0001 注:CHADS2+LAE表示将LAE纳入CHADS2后的新模型,CHADS2-VASc+LAE表示将LAE纳入CHADS2-VASc后的新模型。P表示与原假设AUC为0.5相比,P < 0.05,则拒绝原假设,提示模型可区分阳性组及阴性组。P*表示CHADS2/CHADS2-VASc模型与其相关新模型AUC值的比较(如:CHADS2与CHADS2+LAE的AUC相比,CHADS2-VASc与CHADS2-VASc与CHADS2-VASc+LAE的AUC相比,以此类推),P*值< 0.05有意义。 表 5 CHADS2/CHADS2-VASc与LAE+HSUA+FIB预测LAT/SEC效能比较
Table 5. Comparison of Thrombosis/Spontaneous Imaging Efficacy
模型 AUC P 95%CI P* CHADS2 0.614 0.0149 0.587~0.642 < 0.0001 CHADS2-VASc 0.694 0.0145 0.668~0.720 0.001 LAE+HSUA+FIB 0.756 0.0137 0.731~0.780 注:P表示与原假设ROC曲线下面积为0.5相比,P < 0.05,提示拒绝原假设,模型可区分LAT/SEC及阴性。P*表示模型LAE+HSUA+FIB与模型CHADS2/CHADS2-VASc模型与AUC值的比较,P* < 0.05。 -
[1] Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation(ATRIA)Study[J]. JAMA, 2001, 285(18): 2370-2375. doi: 10.1001/jama.285.18.2370
[2] Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study[J]. Stroke, 2005, 36(6): 1115-1119. doi: 10.1161/01.STR.0000166053.83476.4a
[3] Beigel R, Wunderlich NC, Ho SY, et al. The left atrial appendage: anatomy, function, and noninvasive evaluation[J]. JACC Cardiovasc Imaging, 2014, 7(12): 1251-1265. doi: 10.1016/j.jcmg.2014.08.009
[4] Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation[J]. Ann Thorac Surg, 1996, 61(2): 755-759. doi: 10.1016/0003-4975(95)00887-X
[5] Black IW, Hopkins AP, Lee LC, et al. Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis[J]. J Am Coll Cardiol, 1991, 18(2): 398-404. doi: 10.1016/0735-1097(91)90592-W
[6] Leung DY, Black IW, Cranney GB, et al. Prognostic implications of left atrial spontaneous echo contrast in nonvalvular atrial fibrillation[J]. J Am Coll Cardiol, 1994, 24(3): 755-762. doi: 10.1016/0735-1097(94)90025-6
[7] Wang B, Wang Z, Fu G, et al. Left atrial spontaneous echo contrast and ischemic stroke in patients undergoing percutaneous left atrial appendage closure[J]. Front Cardiovasc Med, 2021, 8: 723280. doi: 10.3389/fcvm.2021.723280
[8] Hilberath JN, Oakes DA, Shernan SK, et al. Safety of transesophageal echocardiography[J]. J Am Soc Echocardiogr, 2010, 23(11): 1115-1127. doi: 10.1016/j.echo.2010.08.013
[9] Yarmohammadi H, Klosterman T, Grewal G, et al. Efficacy of the CHADS2 scoring system to assess left atrial thrombogenic milieu risk before cardioversion of non-valvular atrial fibrillation[J]. Am J Cardiol, 2013, 112(5): 678-683. doi: 10.1016/j.amjcard.2013.04.047
[10] Zhang E, Liu T, Li Z, et al. High CHA2DS2-VASc score predicts left atrial thrombus or spontaneous echo contrast detected by transesophageal echocardiography[J]. Int J Cardiol, 2015, 184: 540-542. doi: 10.1016/j.ijcard.2015.02.109
[11] Huang J, Liao HT, Fei HW, et al. Association of thromboembolic risk score with left atrial thrombus and spontaneous echocardiographic contrast in non-anticoagulated nonvalvular atrial fibrillation patients[J]. Cardiology, 2018, 140(2): 87-95. doi: 10.1159/000489390
[12] Liu FZ, Liao HT, Lin WD, et al. Predictive effect of hyperuricemia on left atrial stasis in non-valvular atrial fibrillation patients[J]. Int J Cardiol, 2018, 258: 103-108. doi: 10.1016/j.ijcard.2018.01.080
[13] Numa S, Hirai T, Nakagawa K, et al. Hyperuricemia and transesophageal echocardiographic thromboembolic risk in patients with atrial fibrillation at clinically low-intermediate risk[J]. Circ J, 2014, 78(7): 1600-1605. doi: 10.1253/circj.CJ-13-1385
[14] Tang RB, Dong JZ, Yan XL, et al. Serum uric acid and risk of left atrial thrombus in patients with nonvalvular atrial fibrillation[J]. Can J Cardiol, 2014, 30(11): 1415-1421. doi: 10.1016/j.cjca.2014.06.009
[15] Kleemann T, Becker T, Strauss M, et al. Prevalence and clinical impact of left atrial thrombus and dense spontaneous echo contrast in patients with atrial fibrillation and low CHADS2 score[J]. Eur J Echocardiogr, 2009, 10(3): 383-398. doi: 10.1093/ejechocard/jen256
[16] Fatkin D, Kelly RP, Feneley MP. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo[J]. J Am Coll Cardiol, 1994, 23(4): 961-969. doi: 10.1016/0735-1097(94)90644-0
[17] Bernier M, Abdelmoneim SS, Stuart Moir W, et al. CUTE-CV: a prospective study of enhanced left atrial appendage visualization with microbubble contrast agent use during transesophageal echocardiography guided cardioversion[J]. Echocardiography, 2013, 30(9): 1091-1097.
[18] Zhao Y, Ji L, Liu J, et al. Intensity of left atrial spontaneous echo contrast as a correlate for stroke risk stratification in patients with nonvalvular atrial fibrillation[J]. Sci Rep, 2016, 6: 27650. doi: 10.1038/srep27650
[19] Beppu S, Nimura Y, Sakakibara H, et al. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance[J]. J Am Coll Cardiol, 1985, 6(4): 744-749. doi: 10.1016/S0735-1097(85)80476-9
[20] Mascioli G, Lucca E, Michelotti F, et al. Severe spontaneous echo contrast/auricolar thrombosis in "nonvalvular" AF: value of thromboembolic risk scores[J]. Pacing Clin Electrophysiol, 2017, 40(1): 57-62. doi: 10.1111/pace.12958
[21] Providência R, Botelho A, Trigo J, et al. Possible refinement of clinical thromboembolism assessment in patients with atrial fibrillation using echocardiographic parameters[J]. Europace, 2012, 14(1): 36-45. doi: 10.1093/europace/eur272
[22] Ning W, Li Y, Ma C, et al. The refinement of risk stratification for atrial thrombus or spontaneous echo contrast in nonvalvular atrial fibrillation[J]. Int Heart J, 2017, 58(6): 885-893. doi: 10.1536/ihj.16-444
[23] Benjamin EJ, D'Agostino RB, Belanger AJ, et al. Left atrial size and the risk of stroke and death. The Framingham Heart Study[J]. Circulation, 1995, 92(4): 835-841. doi: 10.1161/01.CIR.92.4.835
[24] Shin HY, Jeong IH, Kang CK, et al. Relation between left atrial enlargement and stroke subtypes in acute ischemic stroke patients[J]. J Cerebrovasc Endovasc Neurosurg, 2013, 15(3): 131-136. doi: 10.7461/jcen.2013.15.3.131
[25] Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature[J]. Ann Intern Med, 1993, 118(12): 956-963. doi: 10.7326/0003-4819-118-12-199306150-00008
[26] Black IW, Chesterman CN, Hopkins AP, et al. Hematologic correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation[J]. J Am Coll Cardiol, 1993, 21(2): 451-457. doi: 10.1016/0735-1097(93)90688-W
[27] Dudley SC Jr, Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases[J]. Circulation, 2005, 112(9): 1266-1273. doi: 10.1161/CIRCULATIONAHA.105.538108
[28] Gustafsson C, Blombäck M, Britton M, et al. Coagulation factors and the increased risk of stroke in nonvalvular atrial fibrillation[J]. Stroke, 1990, 21(1): 47-51. doi: 10.1161/01.STR.21.1.47
[29] Lip GY, Lowe GD, Rumley A, et al. Fibrinogen and fibrin D-dimer levels in paroxysmal atrial fibrillation: evidence for intermediate elevated levels of intravascular thrombogenesis[J]. Am Heart J, 1996, 131(4): 724-730. doi: 10.1016/S0002-8703(96)90278-1
[30] Li-Saw-Hee FL, Blann AD, Lip GY. A cross-sectional and diurnal study of thrombogenesis among patients with chronic atrial fibrillation[J]. J Am Coll Cardiol, 2000, 35(7): 1926-1931. doi: 10.1016/S0735-1097(00)00627-6
[31] 耿蓬勃, 徐晓辉, 张丹凤, 等. 冠状动脉病变程度与胆红素血脂指数及纤维蛋白原水平的关系[J]. 临床血液学杂志, 2020, 33(4): 237-240, 244. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXZ202004002.htm
[32] Zhang X, Hu M, Wang X, et al. New perspective on the risk markers for left atrial thrombosis in patients with atrial fibrillation[J]. Eur J Prev Cardiol, 2020, 110: 50.