医学影像人工智能在心脏瓣膜疾病介入诊疗中的应用

谢明星. 医学影像人工智能在心脏瓣膜疾病介入诊疗中的应用[J]. 临床心血管病杂志, 2022, 38(12): 929-933. doi: 10.13201/j.issn.1001-1439.2022.12.001
引用本文: 谢明星. 医学影像人工智能在心脏瓣膜疾病介入诊疗中的应用[J]. 临床心血管病杂志, 2022, 38(12): 929-933. doi: 10.13201/j.issn.1001-1439.2022.12.001
XIE Mingxing. Artificial intelligence in medical imaging: implications for interventional therapy of heart valve diseases[J]. J Clin Cardiol, 2022, 38(12): 929-933. doi: 10.13201/j.issn.1001-1439.2022.12.001
Citation: XIE Mingxing. Artificial intelligence in medical imaging: implications for interventional therapy of heart valve diseases[J]. J Clin Cardiol, 2022, 38(12): 929-933. doi: 10.13201/j.issn.1001-1439.2022.12.001

医学影像人工智能在心脏瓣膜疾病介入诊疗中的应用

详细信息

Artificial intelligence in medical imaging: implications for interventional therapy of heart valve diseases

More Information
  • 医学影像人工智能技术的研究与进展,将极大促进现代心脏瓣膜病介入诊疗的进步。超声心动图、心脏磁共振、CT与心血管造影等成像技术,在心脏瓣膜病介入治疗术前患者精准筛选、术中关键手术操作引导与监测、术后疗效评价与预后评估过程中,均发挥重要作用。不同成像技术依据其成像原理,在介入治疗围手术期各具独特优势。临床上,医学成像人工操作与解读方式,存在明显局限性。人工智能通过大数据分析,拥有智能解读医学影像的能力,在心脏瓣膜疾病的介入治疗中已显示出巨大的潜在应用前景。本文将对心脏瓣膜疾病介入诊疗领域中医学影像人工智能研究、进展与应用价值进行介绍。
  • 加载中
  • 图 1  基于AI自动定量心脏结构和功能参数

    Figure 1.  AI-based automatic quantification of cardiac structural and functional parameters

    图 2  心脏瓣膜疾病患者智能化术前筛选

    Figure 2.  Artifical Intelligence-based preoperative screening patients with heart valve disease

  • [1]

    Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study[J]. Lancet, 2006, 368(9540): 1005-1011. doi: 10.1016/S0140-6736(06)69208-8

    [2]

    Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease[J]. Nat Rev Cardiol, 2021, 18(12): 853-864. doi: 10.1038/s41569-021-00570-z

    [3]

    Zhang J, Gajjala S, Agrawal P, et al. Fully Automated Echocardiogram Interpretation in Clinical Practice[J]. Circulation, 2018, 138(16): 1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338

    [4]

    Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256. doi: 10.1038/s41586-020-2145-8

    [5]

    Kang NG, Suh YJ, Han K, et al. Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning[J]. Korean J Radiol, 2021, 22(3): 334-343. doi: 10.3348/kjr.2020.0099

    [6]

    Kwak S, Lee Y, Ko T, et al. Unsupervised Cluster Analysis of Patients With Aortic Stenosis Reveals Distinct Population With Different Phenotypes and Outcomes[J]. Circ Cardiovasc Imaging, 2020, 13(5): e009707. doi: 10.1161/CIRCIMAGING.119.009707

    [7]

    Lachmann M, Rippen E, Schuster T, et al. Subphenotyping of Patients With Aortic Stenosis by Unsupervised Agglomerative Clustering of Echocardiographic and Hemodynamic Data[J]. JACC Cardiovasc Interv, 2021, 14(19): 2127-2140. doi: 10.1016/j.jcin.2021.08.034

    [8]

    Sengupta PP, Shrestha S, Kagiyama N, et al. A Machine-Learning Framework to Identify Distinct Phenotypes of Aortic Stenosis Severity[J]. JACC Cardiovasc Imaging, 2021, 14(9): 1707-1720. doi: 10.1016/j.jcmg.2021.03.020

    [9]

    Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos[J]. Comput Biol Med, 2016, 73: 47-55. doi: 10.1016/j.compbiomed.2016.03.026

    [10]

    Pimor A, Galli E, Vitel E, et al. Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 177-184.

    [11]

    Bartko PE, Heitzinger G, Spinka G, et al. Principal Morphomic and Functional Components of Secondary Mitral Regurgitation[J]. JACC Cardiovasc Imaging, 2021, 14(12): 2288-2300. doi: 10.1016/j.jcmg.2021.05.020

    [12]

    Ouyang D, Thomas JD. Characterizing Mitral Regurgitation With Precision Phenotyping and Unsupervised Learning[J]. JACC Cardiovasc Imaging, 2021, 14(12): 2301-2302. doi: 10.1016/j.jcmg.2021.06.023

    [13]

    Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network Tomography for Understanding Phenotypic Presentations in Aortic Stenosis[J]. JACC Cardiovasc Imaging, 2019, 12(2): 236-248. doi: 10.1016/j.jcmg.2018.11.025

    [14]

    Playford D, Bordin E, Mohamad R, et al. Enhanced Diagnosis of Severe Aortic Stenosis Using Artificial Intelligence: A Proof-of-Concept Study of 530, 871 Echocardiograms[J]. JACC Cardiovasc Imaging, 2020, 13(4): 1087-1090. doi: 10.1016/j.jcmg.2019.10.013

    [15]

    Thyregod HG, Steinbrüchel DA, Ihlemann N, et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial[J]. J Am Coll Cardiol, 2015, 65(20): 2184-2194. doi: 10.1016/j.jacc.2015.03.014

    [16]

    Leon MB, Smith CR, Mack MJ, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients[J]. N Engl J Med, 2016, 374(17): 1609-1620. doi: 10.1056/NEJMoa1514616

    [17]

    Al WA, Jung HY, Yun ID, et al. Automatic aortic valve landmark localization in coronary CT angiography using colonial walk[J]. PLoS One, 2018, 13(7): e0200317. doi: 10.1371/journal.pone.0200317

    [18]

    Theriault-Lauzier P, Alsosaimi H, Mousavi N, et al. Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry[J]. Int J Comput Assist Radiol Surg, 2020, 15(4): 577-588. doi: 10.1007/s11548-020-02131-0

    [19]

    Astudillo P, De Beule M, Dambre J, et al. Towards safe and efficient preoperative planning of transcatheter mitral valve interventions[J]. Morphologie, 2019, 103(343): 139-147. doi: 10.1016/j.morpho.2019.09.002

    [20]

    de Jaegere P, De Santis G, Rodriguez-Olivares R, et al. Patient-Specific Computer Modeling to Predict Aortic Regurgitation After Transcatheter Aortic Valve Replacement[J]. JACC Cardiovasc Interv, 2016, 9(5): 508-512. doi: 10.1016/j.jcin.2016.01.003

    [21]

    Auricchio F, Conti M, Morganti S, et al. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach[J]. Comput MethodsBiomech Biomed Engin, 2014, 17(12): 1347-1357. doi: 10.1080/10255842.2012.746676

    [22]

    Rocatello G, El Faquir N, de Backer O, et al. The Impact of Size and Position of a Mechanical Expandable Transcatheter Aortic Valve: Novel Insights Through Computational Modelling and Simulation[J]. J Cardiovasc Transl Res, 2019, 12(5): 435-446. doi: 10.1007/s12265-019-09877-2

    [23]

    Astudillo P, Mortier P, Bosmans J, et al. Enabling Automated Device Size Selection for Transcatheter Aortic Valve Implantation[J]. J Interv Cardiol, 2019, 2019: 3591314.

    [24]

    Mansi T, Voigt I, Georgescu B, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning[J]. Med Image Anal, 2012, 16(7): 1330-1346. doi: 10.1016/j.media.2012.05.009

    [25]

    Biaggi P, Sager DF, Külling J, et al. Potential Value of Fusion Imaging and Automated Three-Dimensional Heart Segmentation During Transcatheter Aortic Valve Replacement[J]. J Am Soc Echocardiogr, 2020, 33(4): 516-517. e1. doi: 10.1016/j.echo.2019.12.012

    [26]

    Biaggi P, Nijhof N, Corti R. Automated anatomical intelligence: next-generation fusion imaging during structural heart interventions[J]. Eur Heart J, 2017, 38(18): 1412.

    [27]

    Faletra FF, Pozzoli A, Agricola E, et al. Echocardiographic-fluoroscopic fusion imaging for transcatheter mitral valve repair guidance[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(7): 715-726. doi: 10.1093/ehjci/jey067

    [28]

    Luo Z, Cai J, Peters TM, et al. Intra-operative 2-D ultrasound and dynamic 3-D aortic model registration for magnetic navigation of transcatheter aortic valve implantation[J]. IEEE Trans Med Imaging, 2013, 32(11): 2152-2165. doi: 10.1109/TMI.2013.2275233

    [29]

    Mazomenos EB, Chang PL, Rippel RA, et al. Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation[J]. Int J Comput Assist Radiol Surg, 2016, 11(6): 1121-1131. doi: 10.1007/s11548-016-1391-6

    [30]

    Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve[J]. EuroIntervention, 2016, 11(9): 1044-1052. doi: 10.4244/EIJV11I9A212

    [31]

    de Jaegere P, Rajani R, Prendergast B, et al. Patient-Specific Computer Modeling for the Planning of Transcatheter Mitral Valve Replacement[J]. J Am Coll Cardiol, 2018, 72(8): 956-958.

    [32]

    Guerrero M, Urena M, Wang DD, et al. Reply: Patient-Specific Computer Modeling for the Planning of Transcatheter Mitral Valve Replacement[J]. J Am Coll Cardiol, 2018, 72(8): 958. doi: 10.1016/j.jacc.2018.06.020

    [33]

    Wang DD, Eng MH, Greenbaum AB, et al. Validating a prediction modeling tool for left ventricular outflow tract(LVOT)obstruction after transcatheter mitral valve replacement(TMVR)[J]. Catheter Cardiovasc Interv, 2018, 92(2): 379-387. doi: 10.1002/ccd.27447

    [34]

    Wang DD, Eng M, Greenbaum A, et al. Predicting LVOT Obstruction After TMVR[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1349-1352. doi: 10.1016/j.jcmg.2016.01.017

    [35]

    Karády J, Ntalas I, Prendergast B, et al. Transcatheter mitral valve replacement in mitral annulus calcification-"The art of computer simulation"[J]. J Cardiovasc Comput Tomogr, 2018, 12(2): 153-157. doi: 10.1016/j.jcct.2017.12.007

    [36]

    Hernandez-Suarez DF, Kim Y, Villablanca P, et al. Machine Learning Prediction Models for In-Hospital Mortality After Transcatheter Aortic Valve Replacement[J]. JACC Cardiovasc Interv, 2019, 12(14): 1328-1338. doi: 10.1016/j.jcin.2019.06.013

    [37]

    Navarese EP, Zhang Z, Kubica J, et al. Development and Validation of a Practical Model to Identify Patients at Risk of Bleeding After TAVR[J]. JACC Cardiovasc Interv, 2021, 14(11): 1196-1206. doi: 10.1016/j.jcin.2021.03.024

    [38]

    Okuno T, Overtchouk P, Asami M, et al. Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement[J]. Sci Rep, 2021, 11(1): 18754. doi: 10.1038/s41598-021-98265-5

    [39]

    Hernandez-Suarez DF, Ranka S, Kim Y, et al. Machine-Learning-Based In-Hospital Mortality Prediction for Transcatheter Mitral Valve Repair in the United States[J]. Cardiovasc Revasc Med, 2021, 22: 22-28. doi: 10.1016/j.carrev.2020.06.017

  • 加载中

(2)

计量
  • 文章访问数:  1976
  • PDF下载数:  1487
  • 施引文献:  0
出版历程
收稿日期:  2022-11-25
刊出日期:  2022-12-13

目录