Research progress of three-dimensional quantitative coronary angiography in the diagnosis of coronary functional stenosis
-
摘要: 准确评估冠状动脉(冠脉)病变的严重程度,对冠心病患者后续的诊疗及预后至关重要。血流储备分数作为冠脉生理学评估的金标准,可准确判断冠脉病变是否导致心肌缺血。但血流储备分数的测量依赖于压力导丝,有创、需药物负荷且花费较大。因此,其临床使用率十分受限。三维定量冠脉造影可通过冠脉造影的原始图像对病变冠脉进行三维重建,并计算病变血管的相关解剖学参数。近年来由三维定量冠脉造影衍生的血流储备分数在冠心病患者诊断、治疗及预后方面也展示出应用潜力。而且,三维定量冠脉造影还可协助优化介入操作。本文将就三维定量冠脉造影在冠心病中的应用研究进展进行综述。
-
关键词:
- 三维定量冠状动脉造影 /
- 血流储备分数 /
- 冠状动脉功能性狭窄
Abstract: Accurate assessment of coronary artery disease severity is crucial for the follow-up diagnosis, treatment, and prognosis of patients with coronary heart disease. As the gold standard for the physiological evaluation of coronary artery, fractional flow reserve (FFR) can accurately determine whether coronary artery disease leads to myocardial ischemia. However, FFR operation depends on a pressure guide wire, which is invasive, requires drug load, and incurs high costs. Therefore, the clinical use of FFR is limited. Three-dimensional quantitative coronary angiography can reconstruct diseased coronary arteries from the original angiography images and calculate relevant anatomical parameters of the affected vessels. In recent years, FFR derived from three-dimensional quantitative coronary angiography has also shown application potential in diagnosis, treatment, and prognosis in patients with coronary heart disease. This article will review the research of three-dimensional quantitative coronary angiography in coronary heart disease. -
[1] Neumann F, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165.
[2] Freitas SA, Nienow D, da Costa CA, et al. Functional Coronary Artery Assessment: a Systematic Literature Review[J]. Wien Klin Wochenschr, 2022, 134(7-8): 302-318. doi: 10.1007/s00508-021-01970-4
[3] Okutucu S, Cilingiroglu M, Feldman MD. Physiologic Assessment of Coronary Stenosis: Current Status and Future Directions[J]. Curr Cardiol Rep, 2021, 23(7): 88. doi: 10.1007/s11886-021-01521-3
[4] Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367. doi: 10.1093/eurheartj/ehaa575
[5] Chowdhury M, Osborn EA. Physiological Assessment of Coronary Lesions in 2020[J]. Curr Treat Options Cardiovasc Med, 2020, 22(1): 2. doi: 10.1007/s11936-020-0803-7
[6] Garcia-Garcia HM, McFadden EP, Farb A, et al. Standardized End Point Definitions for Coronary Intervention Trials: The Academic Research Consortium-2 Consensus Document[J]. Circulation, 2018, 137(24): 2635-2650. doi: 10.1161/CIRCULATIONAHA.117.029289
[7] Suzuki N, Asano T, Nakazawa G, et al. Clinical expert consensus document on quantitative coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics[J]. Cardiovasc Interv Ther, 2020, 35(2): 105-116.
[8] Brown BG, Bolson E, Frimer M, et al. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation[J]. Circulation, 1977, 55(2): 329-337. doi: 10.1161/01.CIR.55.2.329
[9] Klein JL, Hoff JG, Peifer JW, et al. A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries[J]. Int J Card Imaging, 1998, 14(2): 75-87. doi: 10.1023/A:1005903705300
[10] Ding D, Yang J, Westra J, et al. Accuracy of 3-dimensional and 2-dimensional quantitative coronary angiography for predicting physiological significance of coronary stenosis: a FAVOR Ⅱ substudy[J]. Cardiovasc Diagn Ther, 2019, 9(5): 481-491. doi: 10.21037/cdt.2019.09.07
[11] Zhang YJ, Zhu H, Shi SY, et al. Comparison between two-dimensional and three-dimensional quantitative coronary angiography for the prediction of functional severity in true bifurcation lesions: Insights from the randomized DK-CRUSH Ⅱ, Ⅲ, and Ⅳ trials[J]. Catheter Cardiovasc Interv, 2016, 87 Suppl 1: 589-98.
[12] Lee J, Seo KW, Yang HM, et al. Comparison of three-dimensional quantitative coronary angiography and intravascular ultrasound for detecting functionally significant coronary lesions[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1256-1263. doi: 10.21037/cdt-20-560
[13] 曾秋棠, 程翔, 彭昱东. 冠状动脉功能学和腔内影像学评价进展[J]. 临床心血管病杂志, 2021, 37(5): 398-401. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2021.05.002
[14] Nishi T, Kitahara H, Fujimoto Y, et al. Comparison of 3-dimensional and 2-dimensional quantitative coronary angiography and intravascular ultrasound for functional assessment of coronary lesions[J]. J Cardiol, 2017, 69(1): 280-286. doi: 10.1016/j.jjcc.2016.05.006
[15] Legutko J, Bryniarski KL, Kaluza GL, et al. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice[J]. J Clin Med, 2022, 11(22): 6639. doi: 10.3390/jcm11226639
[16] Nogic J, Prosser H, O'Brien J, et al. The assessment of intermediate coronary lesions using intracoronary imaging[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1445-1460. doi: 10.21037/cdt-20-226
[17] 卢丽丽, 侯俐, 杨天云, 等. CAG与OCT评价DCB行PCI时的冠状动脉管腔变化的差异[J]. 临床心血管病杂志, 2022, 38(1): 28-33. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.01.006
[18] Usui E, Yonetsu T, Kanaji Y, et al. Efficacy of Optical Coherence Tomography-derived Morphometric Assessment in Predicting the Physiological Significance of Coronary Stenosis: Head-to-Head Comparison with Intravascular Ultrasound[J]. EuroIntervention, 2018, 13(18): e2210-e2218. doi: 10.4244/EIJ-D-17-00613
[19] Nardone M, McCarthy M, Ardern CI, et al. Concurrently Low Coronary Flow Reserve and Low Index of Microvascular Resistance Are Associated With Elevated Resting Coronary Flow in Patients With Chest Pain and Nonobstructive Coronary Arteries[J]. Circ Cardiovasc Interv, 2022, 15(3): e011323.
[20] Ramasamy A, Jin C, Tufaro V, et al. Computerised Methodologies for Non-Invasive Angiography-Derived Fractional Flow Reserve Assessment: A Critical Review[J]. J Interv Cardiol, 2020: 6381637.
[21] Tu S, Westra J, Yang J, et al. Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography: The International Multicenter FAVOR Pilot Study[J]. JACC Cardiovasc Interv, 2016, 9(19): 2024-2035.
[22] Westra J, Andersen BK, Campo G, et al. Diagnostic Performance of In-Procedure Angiography-Derived Quantitative Flow Reserve Compared to Pressure-Derived Fractional Flow Reserve: The FAVOR Ⅱ Europe-Japan Study[J]. J Am Heart Assoc, 2018, 7(14): e009603.
[23] Masdjedi K, van Zandvoort L, Balbi MM, et al. Validation of a three-dimensional quantitative coronary angiography-based software to calculate fractional flow reserve: the FAST study[J]. EuroIntervention, 2020, 16(7): 591-599.
[24] Fearon WF, Achenbach S, Engstrom T, et al. Accuracy of Fractional Flow Reserve Derived From Coronary Angiography[J]. Circulation, 2019, 139(4): 477-484.
[25] Lauri FM, Macaya F, Mejia-Renteria H, et al. Angiography-derived functional assessment of non-culprit coronary stenoses in primary percutaneous coronary intervention[J]. EuroIntervention, 2020, 15(18): e1594-e1601.
[26] Sheng X, Qiao Z, Ge H, et al. Novel application of quantitative flow ratio for predicting microvascular dysfunction after ST-segment-elevation myocardial infarction[J]. Catheter Cardiovasc Interv, 2020, 95 Suppl 1: 624-632.
[27] Song L, Xu B, Tu S, et al. 2-Year Outcomes of Angiographic Quantitative Flow Ratio-Guided Coronary Interventions[J]. J Am Coll Cardiol, 2022, 80(22): 2089-2101.
[28] Jin Z, Xu B, Yang X, et al. Coronary Intervention Guided by Quantitative Flow Ratio vs Angiography in Patients With or Without Diabetes[J]. J Am Coll Cardiol, 2022, 80(13): 1254-1264.
[29] Barauskas M, Ziubryte G, Jodka N, et al. Quantitative flow ratio vs. angiography-only guided PCI in STEMI patients: one-year cardiovascular outcomes[J]. BMC Cardiovasc Disord, 2023, 23(1): 136.
[30] Suzuki N, Nishide S, Kimura T, et al. Relationship of quantitative flow ratio after second-generation drug-eluting stent implantation to clinical outcomes[J]. Heart Vessels, 2020, 35(6): 743-749.
[31] Buono A, Muhlenhaus A, Schafer T, et al. QFR Predicts the Incidence of Long-Term Adverse Events in Patients with Suspected CAD: Feasibility and Reproducibility of the Method[J]. J Clin Med, 2020, 9(1): 220.
[32] Dowling C, Nelson AJ, Lim RY, et al. Quantitative flow ratio to predict long-term coronary artery bypass graft patency in patients with left main coronary artery disease[J]. Int J Cardiovasc Imaging, 2022, 38(12): 2811-2818.
[33] Mejia-Renteria H, Lee JM, Lauri F, et al. Influence of Microcirculatory Dysfunction on Angiography-Based Functional Assessment of Coronary Stenoses[J]. JACC Cardiovasc Interv, 2018, 11(8): 741-753.
[34] Yazaki K, Otsuka M, Kataoka S, et al. Applicability of 3-Dimensional Quantitative Coronary Angiography-Derived Computed Fractional Flow Reserve for Intermediate Coronary Stenosis[J]. Circ J, 2017, 81(7): 988-992.
[35] Raber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2018, 39(35): 3281-3300.
[36] Ono M, Kawashima H, Hara H, et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging[J]. Front Cardiovasc Med, 2020, 7: 119.