不同铝佐剂配比HJY-ATRQβ-001疫苗制剂的免疫效应及安全性研究

胡夏君, 刘倩倩, 徐冬梅, 等. 不同铝佐剂配比HJY-ATRQβ-001疫苗制剂的免疫效应及安全性研究[J]. 临床心血管病杂志, 2024, 40(5): 394-401. doi: 10.13201/j.issn.1001-1439.2024.05.009
引用本文: 胡夏君, 刘倩倩, 徐冬梅, 等. 不同铝佐剂配比HJY-ATRQβ-001疫苗制剂的免疫效应及安全性研究[J]. 临床心血管病杂志, 2024, 40(5): 394-401. doi: 10.13201/j.issn.1001-1439.2024.05.009
HU Xiajun, LIU Qianqian, XU Dongmei, et al. The immunological effects and safety of HJY-ATRQβ-001 vaccine preparations with different proportions of aluminum adjuvant[J]. J Clin Cardiol, 2024, 40(5): 394-401. doi: 10.13201/j.issn.1001-1439.2024.05.009
Citation: HU Xiajun, LIU Qianqian, XU Dongmei, et al. The immunological effects and safety of HJY-ATRQβ-001 vaccine preparations with different proportions of aluminum adjuvant[J]. J Clin Cardiol, 2024, 40(5): 394-401. doi: 10.13201/j.issn.1001-1439.2024.05.009

不同铝佐剂配比HJY-ATRQβ-001疫苗制剂的免疫效应及安全性研究

  • 基金项目:
    国家自然科学基金项目(No:31370931)
详细信息

The immunological effects and safety of HJY-ATRQβ-001 vaccine preparations with different proportions of aluminum adjuvant

More Information
  • 目的  具有生物靶向效应的治疗性疫苗在心血管疾病治疗中极具前景。针对血管紧张素Ⅱ受体1型(AT1R)的病毒样颗粒疫苗ATRQβ-001已在多种高血压动物模型中显示出良好的降压效果及靶器官保护效应。为进一步提高疫苗免疫效率,氢氧化铝佐剂被用于疫苗制备中。本研究旨在评价不同铝佐剂配比HJY-ATRQβ-001疫苗制剂的免疫效应和安全性,以指导铝佐剂的合理应用。 方法  将ATRQβ-001分别与不同浓度氢氧化铝混合制成HJY-ATRQβ-001疫苗制剂1(含1 mg/mL氢氧化铝)和疫苗制剂2(含2 mg/mL氢氧化铝),皮下免疫后通过免疫荧光、流式细胞检测、酶联免疫吸附试验及酶联免疫斑点试验等方法评价疫苗制剂诱导的差异性免疫反应。 结果  经皮免疫后,HJY-ATRQβ-001疫苗进入引流淋巴结的包膜下区域,并逐步转移并沉积于滤泡树突状细胞(FDCs)表面,为滤泡B细胞提供持续的抗原刺激。同时,两种疫苗制剂均能有效诱导抗原提呈细胞(DCs)成熟,并辅助2型辅助性T细胞(Th2)和滤泡辅助性T细胞(Tfh)主导的T细胞活化。值得注意的是,含高浓度佐剂的疫苗制剂2同时一过性激活了Th17细胞、细胞毒性T细胞(CTLs)和调节性T细胞(Treg),展示出更强的T细胞刺激性。疫苗在FDCs上的沉积和辅助性T细胞活化共同促进针对AT1R短肽的高效体液免疫应答,表现为特异性抗体分泌细胞、特异性抗体以及B细胞记忆形成,但含不同浓度铝佐剂的两组疫苗制剂在体液免疫激活效应上没有显著性差异。 结论  氢氧化铝佐剂在HJY-ATRQβ-001疫苗免疫中表现出良好的免疫辅助效应,提高铝佐剂浓度在增加免疫刺激性的同时,未能显著提升体液免疫效果。为平衡免疫效果和安全性,在疫苗制备过程中应仔细考虑佐剂的添加和合适的剂量。
  • 加载中
  • 图 1  疫苗皮下免疫后淋巴结内分布及沉积

    Figure 1.  Distribution and deposition of the HJY-ATRQβ-001 vaccine in the draining lymph node

    图 2  疫苗皮下免疫后脾脏内分布情况

    Figure 2.  Distribution of the HJY-ATRQβ-001 vaccine in the spleen

    图 3  疫苗制剂免疫后树突状细胞激活及主要辅助性T细胞分化

    Figure 3.  Dendritic cell activation and major helper T cell differentiation after vaccine immunization

    图 4  疫苗制剂免疫后Th17、Treg及细胞毒性T细胞分化

    Figure 4.  Th17, Treg, and CTL cell differentiation after vaccine immunization

    图 5  疫苗免疫第14天及21天血清细胞因子分泌水平

    Figure 5.  Serum cytokine secretion levels on 14th and 21st day of vaccine immunization

    图 6  疫苗制剂诱导的靶向肽特异性体液免疫效应

    Figure 6.  The humoral immuity activation induced by vaccine immunization

  • [1]

    廖玉华, 程翔, 程龙献. 心血管病迎来生物技术药治疗的新时代[J]. 临床心血管病杂志, 2023, 39(1): 1-5. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.01.001

    [2]

    Chen X, Qiu Z, Yang S, et al. Effectiveness and safety of a therapeutic vaccine against angiotensin Ⅱ receptor type 1 in hypertensive animals[J]. Hypertension, 2013, 61(2): 408-416. doi: 10.1161/HYPERTENSIONAHA.112.201020

    [3]

    Ding D, Du Y, Qiu Z, et al. Vaccination against type 1 angiotensin receptor prevents streptozotocin-induced diabetic nephropathy[J]. J Mol Med(Berl), 2016, 94(2): 207-218.

    [4]

    Zhang H, Liao M, Cao M, et al. ATRQβ-001 Vaccine Prevents Experimental Abdominal Aortic Aneurysms[J]. J Am Heart Assoc, 2019, 8(18): e012341. doi: 10.1161/JAHA.119.012341

    [5]

    Hu X, Chen X, Shi X, et al. Bionanoparticle-Based Delivery in Antihypertensive Vaccine Mediates DC Activation through Lipid-Raft Reorganization[J]. Adv Funct Mater, 2020, 30(19): 2000346. doi: 10.1002/adfm.202000346

    [6]

    World Health Organization. WHO Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines, Annex 2, TRS NO 987[EB/OL]. https://www.who.int/publications/m/item/nonclinical-evaluation-of-vaccine-adjuvants-and-adjuvanted-vaccines-annex-2-trs-no-987.

    [7]

    Food and Drug Administration. Regulatory Considerations in the Safety Assessment of Adjuvants and Adjuvanted Preventive Vaccines[EB/OL]. https://www.fda.gov/media/141379/download.

    [8]

    国家药典委员会. 中华人民共和国药典(2020年版)[EB/OL]. https://ydz.chp.org.cn/#/main.

    [9]

    Grigoryan L, Lee A, Walls AC, et al. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice[J]. NPJ Vaccines, 2022, 7(1): 55. doi: 10.1038/s41541-022-00472-2

    [10]

    Afshari E, Ahangari Cohan R, Shams Nosrati MS, et al. Development of a bivalent protein-based vaccine candidate against invasive pneumococcal diseases based on novel pneumococcal surface protein A in combination with pneumococcal histidine triad protein D[J]. Front Immunol, 2023, 14: 1187773. doi: 10.3389/fimmu.2023.1187773

    [11]

    Kelly HG, Tan HX, Juno JA, et al. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation[J]. JCI Insight, 2020, 5(10): e136653. doi: 10.1172/jci.insight.136653

    [12]

    Wu H, Wang Y, Wang G, et al. A bivalent antihypertensive vaccine targeting L-type calcium channels and angiotensin AT1 receptors[J]. Br J Pharmacol, 2020, 177(2): 402-419. doi: 10.1111/bph.14875

    [13]

    秦萍, 廖玉华, 邱志华. 生物靶向治疗高血压的研究进展[J]. 临床心血管病杂志, 2023, 39(1): 6-10. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.01.002

    [14]

    Manolova V, Flace A, Saudan P, et al. Nanoparticles target distinct dendritic cell populations according to their size[J]. Eur J Immunol, 2008, 38: 1404-1413. doi: 10.1002/eji.200737984

    [15]

    Kwak HW, Shin W, Baik K, et al. Single-stranded RNA adjuvant enhances the efficacy of 10-valent human papilloma virus-like particle vaccine[J]. Microbiol Immunol, 2022, 66(11): 529-537. doi: 10.1111/1348-0421.13024

    [16]

    Grigoryan L, Lee A, Walls AC, et al. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice[J]. NPJ Vaccines, 2022, 7(1): 55. doi: 10.1038/s41541-022-00472-2

    [17]

    Robinson C, Baehr C, Schmiel SE, et al. Alum adjuvant is more effective than MF59 at prompting early germinal center formation in response to peptide-protein conjugates and enhancing efficacy of a vaccine against opioid use disorders[J]. Hum Vaccin Immunother, 2019, 15(4): 909-917. doi: 10.1080/21645515.2018.1558697

    [18]

    Sepasi A, Ghafourian M, Taghizadeh M, et al. Formulation of Recombinant H1N1 Hemagglutinin in MF59 and Alum Adjuvants: A Comparison of the Vaccines Potency and Efficacy in BALB/C Mice[J]. Viral Immunol, 2023, 36(6): 401-408. doi: 10.1089/vim.2023.0003

    [19]

    Pihl M, Akerman L, Axelsson S, et al. Regulatory T cell phenotype and function 4 years after GAD-alum treatment in children with type 1 diabetes[J]. Clin Exp Immunol, 2013, 172(3): 394-402.

    [20]

    Martínez-Riaño A, Bovolenta ER, Mendoza P, et al. Antigen phagocytosis by B cells is required for a potent humoral response[J]. EMBO Rep, 2018, 19(9): e46016.

    [21]

    Moyer TJ, Kato Y, Abraham W, et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity[J]. Nat Med, 2020, 26(3): 430-440.

  • 加载中

(6)

计量
  • 文章访问数:  880
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2023-11-30
刊出日期:  2024-05-13

目录