肠道微生物群与自主神经相关心血管疾病的研究进展

郭露, 陈先慧, 马玉兰. 肠道微生物群与自主神经相关心血管疾病的研究进展[J]. 临床心血管病杂志, 2024, 40(6): 502-507. doi: 10.13201/j.issn.1001-1439.2024.06.015
引用本文: 郭露, 陈先慧, 马玉兰. 肠道微生物群与自主神经相关心血管疾病的研究进展[J]. 临床心血管病杂志, 2024, 40(6): 502-507. doi: 10.13201/j.issn.1001-1439.2024.06.015
GUO Lu, CHEN Xianhui, MA Yulan. Study of intestinal flora on autonomic nerve-related cardiovascular disease[J]. J Clin Cardiol, 2024, 40(6): 502-507. doi: 10.13201/j.issn.1001-1439.2024.06.015
Citation: GUO Lu, CHEN Xianhui, MA Yulan. Study of intestinal flora on autonomic nerve-related cardiovascular disease[J]. J Clin Cardiol, 2024, 40(6): 502-507. doi: 10.13201/j.issn.1001-1439.2024.06.015

肠道微生物群与自主神经相关心血管疾病的研究进展

  • 基金项目:
    国家自然科学基金地区科学基金(No:81760084)
详细信息

Study of intestinal flora on autonomic nerve-related cardiovascular disease

More Information
  • 心脏活动受自主神经系统的调节,心脏自主神经系统受交感神经系统和副交感神经系统共同支配,相互平衡,维持着心血管系统的正常生理功能。多项研究表明,肠道微生物群及其代谢物与自主神经系统功能障碍后引起的一系列心血管疾病(冠脉粥样硬化、房性及室性心律失常、高血压等)密切相关。本文以肠道微生物群及其代谢物对自主神经系统的影响为切入点,以期通过前期干预肠道微生物群及其代谢物来协助治疗自主神经系统功能失衡引起的相关心血管疾病,为预防及治疗心血管疾病开拓新思路。
  • 加载中
  • [1]

    Meng G, Zhou X, Wang M, et al. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways[J]. EBio Medicine, 2019, 44: 656-664.

    [2]

    Mogilevski T, Burgell R, Aziz Q, et al. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD[J]. Aliment Pharmacol Ther, 2019, 50(7): 720-737. doi: 10.1111/apt.15433

    [3]

    Zhang Y, Zhang S, Li B, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res, 2022, 118(3): 785-797. doi: 10.1093/cvr/cvab114

    [4]

    Requena T, Velasco M. The human microbiome in sickness and in health[J]. Rev Clin Esp(Barc), 2021, 221(4): 233-240. doi: 10.1016/j.rce.2019.07.004

    [5]

    Pedron T, Nigro G, Sansonetti PJ. From homeostasis to pathology: decrypting microbe-host symbiotic signals in the intestinal crypt[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1707): 20150500. doi: 10.1098/rstb.2015.0500

    [6]

    Ruigrok R, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease[J]. Gut Microbes, 2023, 15(1): 2201155. doi: 10.1080/19490976.2023.2201155

    [7]

    El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging Trends in "Smart Probiotics": Functional Consideration for the Development of Novel Health and Industrial Applications[J]. Front Microbiol, 2017, 8: 1889. doi: 10.3389/fmicb.2017.01889

    [8]

    Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS[J]. E Bio Medicine, 2022, 77: 103908.

    [9]

    Begum N, Mandhare A, Tryphena KP, et al. Epigenetics in depression and gut-brain axis: A molecular crosstalk[J]. Front Aging Neurosci, 2022, 14: 1048333. doi: 10.3389/fnagi.2022.1048333

    [10]

    Amabebe E, Robert FO, Agbalalah T, et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism[J]. Br J Nutr, 2020, 123(10): 1127-1137. doi: 10.1017/S0007114520000380

    [11]

    Mazhar M, Zhu Y, Qin L. The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids[J]. Foods, 2023, 12(5): 110.

    [12]

    Mansuri NM, Mann NK, Rizwan S, et al. Role of gut microbiome in cardiovascular events: a systematic review[J]. Cureus, 2022, 14(12): e32465.

    [13]

    Tang W, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16(3): 137-154. doi: 10.1038/s41569-018-0108-7

    [14]

    Huang X, Gao H, Jiang X, et al. Urolithin B, a Gut Microbiota Metabolite, Reduced Susceptibility to Myocardial Arrhythmic Predisposition after Hypoxia[J]. Dis Markers, 2022, 2022: 6517266.

    [15]

    Fang C, Zuo K, Fu Y, et al. Aggravated gut microbiota and metabolomic imbalances are associated with hypertension patients comorbid with atrial fibrillation[J]. Biomolecules, 2022, 12(10): 110.

    [16]

    Aimée P, Sonia F, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health[J]. Gut Microbes, 2020, 11(2): 135-157. doi: 10.1080/19490976.2019.1638722

    [17]

    Sarasa SB, Mahendran R, Muthusamy G, et al. A brief review on the non-protein amino acid, gamma-amino butyric acid(GABA): its production and role in microbes[J]. Curr Microbiol, 2020, 77(4): 534-544. doi: 10.1007/s00284-019-01839-w

    [18]

    Chen M, Ruan G, Chen L, et al. Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome[J]. Front Endocrinol(Lausanne), 2022, 13: 817100. doi: 10.3389/fendo.2022.817100

    [19]

    Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide[J]. Pharmacol Res, 2020, 153: 104677. doi: 10.1016/j.phrs.2020.104677

    [20]

    Zubcevic J, Richards EM, Yang T, et al. Impaired autonomic nervous system-microbiome circuit in hypertension[J]. Circ Res, 2019, 125(1): 104-116. doi: 10.1161/CIRCRESAHA.119.313965

    [21]

    Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478. doi: 10.1038/s41575-019-0157-3

    [22]

    Bartley A, Yang T, Arocha R, et al. Increased abundance of lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4+ Immune Cells[J]. Front Physiol, 2018, 9: 1593. doi: 10.3389/fphys.2018.01593

    [23]

    Roth W, Zadeh K, Vekariya R, et al. Tryptophan metabolism and gut-brain homeostasis[J]. Int J Mol Sci, 2021, 22(6): 110.

    [24]

    Onal EM, Afsar B, Covic A, et al. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease[J]. Hypertens Res, 2019, 42(2): 123-140. doi: 10.1038/s41440-018-0144-z

    [25]

    Wu P, Vaseghi M. The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure[J]. Pacing Clin Electrophysiol, 2020, 43(2): 172-180. doi: 10.1111/pace.13856

    [26]

    Tavakoli P, Vollmer-Conna U, Hadzi-Pavlovic D, et al. A review of inflammatory bowel disease: a model of microbial, immune and neuropsychological integration[J]. Public Health Rev, 2021, 42: 1603990. doi: 10.3389/phrs.2021.1603990

    [27]

    Younes R, LeBlanc CA, Hiram R. Evidence of failed resolution mechanisms in arrhythmogenic inflammation, fibrosis and right heart disease[J]. Biomolecules, 2022, 12(5): 110.

    [28]

    Srinivasan A, Pansuriya T, Wilson B, et al. Systemic inflammation-related bradycardia in COVID-19[J]. Case Rep Cardiol, 2021, 2021: 9986955.

    [29]

    Piqué N, Berlanga M, Miñana-Galbis D. Health benefits of heat-killed(Tyndallized)probiotics: an overview[J]. Int J Mol Sci, 2019, 20(10): 110.

    [30]

    Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer[J]. BMC Gastroenterol, 2019, 19(1): 131. doi: 10.1186/s12876-019-1047-4

    [31]

    Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis[J]. Cells, 2022, 11(15): 110.

    [32]

    王敢, 钟江华. NLRP3炎性小体在慢性心力衰竭中的作用与机制[J]. 临床心血管病杂志, 2023, 39(8): 591-596. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.08.005

    [33]

    Boini KM, Hussain T, Li PL, et al. Trimethylamine-N-Oxide Instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162.

    [34]

    Shi G, Lin Y, Wu Y, et al. Bacteroides fragilis Supplementation Deteriorated Metabolic Dysfunction, Inflammation, and Aorta Atherosclerosis by Inducing Gut Microbiota Dysbiosis in Animal Model[J]. Nutrients, 2022, 14(11): 110.

    [35]

    朱哿, 高仁元, 秦环龙. 肠道菌群及其代谢产物氧化三甲胺与冠心病相关性的研究进展[J]. 上海预防医学, 2019, 31(10): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYI201910010.htm

    [36]

    Alvares GA, Quintana DS, Hickie IB, et al. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis[J]. J Psychiatry Neurosci, 2016, 41(2): 89-104.

    [37]

    Ye C, Zheng F, Wang JX, et al. Dysregulation of the excitatory renal reflex in the sympathetic activation of spontaneously hypertensive rat[J]. Front Physiol, 2021, 12: 673950.

    [38]

    Toschi-Dias E, Montano N, Tobaldini E, et al. Oscillatory pattern of sympathetic nerve bursts is associated with baroreflex function in heart failure patients with reduced ejection fraction[J]. Front Neurosci, 2021, 15: 669535.

    [39]

    Manolis AA, Manolis TA, Apostolopoulos EJ, et al. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend?[J]. Trends Cardiovasc Med, 2021, 31(5): 290-302.

    [40]

    贾鹤, 于波. 交感神经调节治疗室性心律失常[J]. 中国心脏起搏与心电生理杂志, 2022, 36(1): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXZ202201002.htm

    [41]

    Liu L, Zhao M, Yu X, et al. Pharmacological modulation of vagal nerve activity in cardiovascular diseases[J]. Neurosci Bull, 2019, 35(1): 156-166.

    [42]

    Kanazawa H, Fukuda K. The plasticity of cardiac sympathetic nerves and its clinical implication in cardiovascular disease[J]. Front Synaptic Neurosci, 2022, 14: 960606.

    [43]

    Tang W, Bäckhed F, Landmesser U, et al. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(16): 2089-2105.

    [44]

    Liu H, Zhuang J, Tang P, et al. The role of the gut microbiota in coronary heart disease[J]. Curr Atheroscler Rep, 2020, 22(12): 77.

    [45]

    Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102.

    [46]

    Pieczynska MD, Yang Y, Petrykowski S, et al. Gut microbiota and its metabolites in atherosclerosis development[J]. Molecules, 2020, 25(3): 110.

    [47]

    Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide[J]. APMIS, 2020, 128(5): 353-366.

    [48]

    Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension[J]. Hypertension, 2015, 65(6): 1331-1340.

    [49]

    Richards EM, Li J, Stevens BR, et al. Gut microbiome and neuroinflammation in hypertension[J]. Circ Res, 2022, 130(3): 401-417.

    [50]

    Onyszkiewicz M, Gawrys-Kopczynska M, Konopelski P, et al. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors[J]. Pflugers Arch, 2019, 471(11-12): 1441-1453.

    [51]

    Toral M, Robles-Vera I, de la Visitación N, et al. Critical role of the interaction gut microbiota-sympathetic nervous system in the regulation of blood pressure[J]. Front Physiol, 2019, 10: 231. http://www.xueshufan.com/publication/2921281202

    [52]

    Gawałko M, Agbaedeng TA, Saljic A, et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications[J]. Cardiovasc Res, 2022, 118(11): 2415-2427.

    [53]

    Liu L, Su J, Li R, et al. Changes in intestinal flora structure and metabolites are associated with myocardial fibrosis in patients with persistent atrial fibrillation[J]. Front Nutr, 2021, 8: 702085.

    [54]

    Fang C, Zuo K, Jiao K, et al. PAGln, an atrial fibrillation-linked gut microbial metabolite, acts as a promoter of atrial myocyte injury[J]. Biomolecules, 2022, 12(8): 110.

  • 加载中
计量
  • 文章访问数:  236
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
刊出日期:  2024-06-13

返回顶部

目录