短链脂肪酸与动脉粥样硬化关系的研究进展

王一华, 蒋玉娇, 门冰欣, 等. 短链脂肪酸与动脉粥样硬化关系的研究进展[J]. 临床心血管病杂志, 2024, 40(8): 675-680. doi: 10.13201/j.issn.1001-1439.2024.08.014
引用本文: 王一华, 蒋玉娇, 门冰欣, 等. 短链脂肪酸与动脉粥样硬化关系的研究进展[J]. 临床心血管病杂志, 2024, 40(8): 675-680. doi: 10.13201/j.issn.1001-1439.2024.08.014
WANG Yihua, JIANG Yujiao, MEN Bingxin, et al. Research progress on the relationship between short-chain fatty acids and atherosclerosis[J]. J Clin Cardiol, 2024, 40(8): 675-680. doi: 10.13201/j.issn.1001-1439.2024.08.014
Citation: WANG Yihua, JIANG Yujiao, MEN Bingxin, et al. Research progress on the relationship between short-chain fatty acids and atherosclerosis[J]. J Clin Cardiol, 2024, 40(8): 675-680. doi: 10.13201/j.issn.1001-1439.2024.08.014

短链脂肪酸与动脉粥样硬化关系的研究进展

  • 基金项目:
    甘肃省科技计划项目(No:22JR11RA018)
详细信息

Research progress on the relationship between short-chain fatty acids and atherosclerosis

More Information
  • 动脉粥样硬化(AS)所导致的心脑血管疾病是一类严重危害人类健康的疾病。近年来研究发现,肠道菌群代谢物短链脂肪酸(SCFAs)通过抑制泡沫细胞活性、调节免疫细胞和炎症、抑制氧化应激在AS发病机制中起到重要作用。SCFAs对AS的具体影响及作用机制已得到越来越多的关注。本文就SCFAs的一般特性、SCFAs在AS发展中的作用、通过干预SCFAs防治AS的最新研究进展作一综述。
  • 加载中
  • 图 1  SCFAs在AS中的作用机制图

    Figure 1.  Diagram of the mechanism of action of SCFAs in AS

  • [1]

    Kobiyama K, Ley K. Atherosclerosis[J]. Circ Res, 2018, 123(10): 1118-1120. doi: 10.1161/CIRCRESAHA.118.313816

    [2]

    Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. doi: 10.1096/fj.11-197921

    [3]

    晏家升, 吕冰洁, 程翔. 肠道菌群调节免疫系统影响心血管疾病的研究进展[J]. 临床心血管病杂志, 2022, 38(8): 614-618. doi: 10.13201/j.issn.1001-1439.2022.08.004

    [4]

    Chakaroun RM, Olsson LM, Bäckhed F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease[J]. Nat Rev Cardiol, 2023, 20(4): 217-235. doi: 10.1038/s41569-022-00771-0

    [5]

    Kimura I, Ichimura A, Ohue-Kitano R, et al. Free fatty acid receptors in health and disease[J]. Physiol Rev, 2020, 100(1): 171-210. doi: 10.1152/physrev.00041.2018

    [6]

    Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. doi: 10.1016/j.cell.2016.05.041

    [7]

    van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29(8): 700-712. doi: 10.1016/j.tim.2021.02.001

    [8]

    Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA: mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80(1): 37-49. doi: 10.1017/S0029665120006916

    [9]

    Zhao P, Zhao S, Tian J, et al. Significance of gut microbiota and short-chain fatty acids in heart failure[J]. Nutrients, 2022, 14(18): 110.

    [10]

    Chen Y, Xu C, Huang R, et al. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice[J]. J Nutr Biochem, 2018, 56: 175-182. doi: 10.1016/j.jnutbio.2018.02.011

    [11]

    Aguilar EC, Leonel AJ, Teixeira LG, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation[J]. Nutr Metab Cardiovasc Dis, 2014, 24(6): 606-613. doi: 10.1016/j.numecd.2014.01.002

    [12]

    Lin XL, Xiao LL, Tang ZH, et al. Role of PCSK9 in lipid metabolism and atherosclerosis[J]. Biomed Pharmacother, 2018, 104: 36-44. doi: 10.1016/j.biopha.2018.05.024

    [13]

    Finn AV, Nakano M, Polavarapu R, et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques[J]. J Am Coll Cardiol, 2012, 59(2): 166-177. doi: 10.1016/j.jacc.2011.10.852

    [14]

    Li M, van Esch B, Henricks P, et al. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide-or tumor necrosis factor α-induced endothelial activation[J]. Front Pharmacol, 2018, 9: 233. doi: 10.3389/fphar.2018.00233

    [15]

    Du Y, Li X, Su C, et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice[J]. Br J Pharmacol, 2020, 177(8): 1754-1772. doi: 10.1111/bph.14933

    [16]

    Li H, Gao Z, Zhang J, et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3[J]. Diabetes, 2012, 61(4): 797-806. doi: 10.2337/db11-0846

    [17]

    Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406. e1-10. doi: 10.1053/j.gastro.2013.04.056

    [18]

    Escárcega RO, Lipinski MJ, García-Carrasco M, et al. Inflammation and atherosclerosis: Cardiovascular evaluation in patients with autoimmune diseases[J]. Autoimmun Rev, 2018, 17(7): 703-708. doi: 10.1016/j.autrev.2018.01.021

    [19]

    Tayyeb JZ, Popeijus HE, Mensink RP, et al. Short-Chain Fatty Acids(Except Hexanoic Acid)Lower NF-kB Transactivation, Which Rescues Inflammation-Induced Decreased Apolipoprotein A-I Transcription in HepG2 Cells[J]. Int J Mol Sci, 2020, 21(14): 110.

    [20]

    Kasahara K, Krautkramer KA, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model[J]. Nat Microbiol, 2018, 3(12): 1461-1471. doi: 10.1038/s41564-018-0272-x

    [21]

    Al-Roub A, Akhter N, Al-Sayyar A, et al. Short chain fatty acid acetate increases TNFα-Induced MCP-1 production in monocytic cells via ACSL1/MAPK/NF-κB Axis[J]. Int J Mol Sci, 2021, 22(14): 110.

    [22]

    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. doi: 10.1038/nature12726

    [23]

    van den Berg VJ, Vroegindewey MM, Kardys I, et al. Anti-Oxidized LDL antibodies and coronary artery disease: a systematic review[J]. Antioxidants(Basel), 2019, 8(10): 110.

    [24]

    Aguilar EC, Santos LC, Leonel AJ, et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells[J]. J Nutr Biochem, 2016, 34: 99-105. doi: 10.1016/j.jnutbio.2016.05.002

    [25]

    Haghikia A, Zimmermann F, Schumann P, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism[J]. Eur Heart J, 2022, 43(6): 518-533. doi: 10.1093/eurheartj/ehab644

    [26]

    Petrucci G, Rizzi A, Hatem D, et al. Role of oxidative stress in the pathogenesis of atherothrombotic diseases[J]. Antioxidants(Basel), 2022, 11(7): 110.

    [27]

    Yuan X, Wang L, Bhat OM, et al. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate[J]. Redox Biol, 2018, 16: 21-31. doi: 10.1016/j.redox.2018.02.007

    [28]

    Bartolomaeus H, Balogh A, Yakoub M, et al. Short-Chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation, 2019, 139(11): 1407-1421. doi: 10.1161/CIRCULATIONAHA.118.036652

    [29]

    Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis[J]. BMJ, 2013, 347: f6879. doi: 10.1136/bmj.f6879

    [30]

    Pagliai G, Russo E, Niccolai E, et al. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study[J]. Eur J Nutr, 2020, 59(5): 2011-2024. doi: 10.1007/s00394-019-02050-0

    [31]

    Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug[J]. Nat Med, 2017, 23(7): 850-858. doi: 10.1038/nm.4345

    [32]

    Mueller NT, Differding MK, Zhang M, et al. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial[J]. Diabetes Care, 2021, 44(7): 1462-1471. doi: 10.2337/dc20-2257

    [33]

    Yan N, Wang L, Li Y, et al. Metformin intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation[J]. PLoS One, 2021, 16(7): e0254321. doi: 10.1371/journal.pone.0254321

    [34]

    Chen Y, Shen X, Ma T, et al. Adjunctive Probio-X Treatment Enhances the Therapeutic Effect of a Conventional Drug in Managing Type 2 Diabetes Mellitus by Promoting Short-Chain Fatty Acid-Producing Bacteria and Bile Acid Pathways[J]. mSystems, 2023, 8(1): e0130022. doi: 10.1128/msystems.01300-22

    [35]

    Liu J, Yue S, Yang Z, et al. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism[J]. Pharmacol Res, 2018, 134: 40-50. doi: 10.1016/j.phrs.2018.05.012

    [36]

    Gao B, Wang R, Peng Y, et al. Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro[J]. J Ethnopharmacol, 2018, 224: 465-473. doi: 10.1016/j.jep.2018.06.006

    [37]

    Guo WL, Pan YY, Li L, et al. Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats[J]. Food Funct, 2018, 9(6): 3419-3431. doi: 10.1039/C8FO00836A

    [38]

    Wei X, Tao J, Xiao S, et al. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota[J]. Sci Rep, 2018, 8(1): 3685. doi: 10.1038/s41598-018-22094-2

    [39]

    Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease[J]. Circulation, 2020, 141(17): 1393-1403. doi: 10.1161/CIRCULATIONAHA.119.043081

    [40]

    Ichim TE, Patel AN, Shafer KA. Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome[J]. J Transl Med, 2016, 14(1): 184. doi: 10.1186/s12967-016-0945-2

    [41]

    Wang Y, Dilidaxi D, Wu Y, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J]. Biomed Pharmacother, 2020, 125: 109914. doi: 10.1016/j.biopha.2020.109914

    [42]

    Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102. doi: 10.1161/CIRCRESAHA.118.313565

    [43]

    Brandsma E, Kloosterhuis NJ, Koster M, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis[J]. Circ Res, 2019, 124(1): 94-100. doi: 10.1161/CIRCRESAHA.118.313234

    [44]

    Battson ML, Lee DM, Li Puma LC, et al. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity[J]. Am J Physiol Heart Circ Physiol, 2019, 317(6): H1210-H1220. doi: 10.1152/ajpheart.00346.2019

    [45]

    Fang H, Fu L, Wang J. Protocol for fecal microbiota transplantation in inflammatory bowel disease: a systematic review and meta-analysis[J]. Biomed Res Int, 2018, 2018: 8941340.

  • 加载中

(1)

计量
  • 文章访问数:  1791
  • PDF下载数:  1637
  • 施引文献:  0
出版历程
收稿日期:  2023-09-16
刊出日期:  2024-08-13

目录